Home
Class 12
MATHS
The right hand derivative of f(x)=[x]t a...

The right hand derivative of `f(x)=[x]t a npix a tx=7` is (where [.] denotes the greatest integer function) `0` b. `7pi` c. `-7pi` d. none of these

A

0

B

`7pi`

C

`-7pi`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the right-hand derivative of the function \( f(x) = [x] \cdot 10 \cdot (x \cdot \pi) \) at \( x = 7 \), we will follow these steps: ### Step 1: Define the Right-Hand Derivative The right-hand derivative of \( f \) at \( x = 7 \) is given by: \[ f'(7^+) = \lim_{h \to 0^+} \frac{f(7 + h) - f(7)}{h} \] ### Step 2: Evaluate \( f(7) \) First, we need to find \( f(7) \): \[ f(7) = [7] \cdot 10 \cdot (7 \cdot \pi) = 7 \cdot 10 \cdot (7 \cdot \pi) = 70 \cdot 7 \cdot \pi = 490 \pi \] ### Step 3: Evaluate \( f(7 + h) \) Next, we evaluate \( f(7 + h) \): \[ f(7 + h) = [7 + h] \cdot 10 \cdot ((7 + h) \cdot \pi) \] For small \( h \), \( [7 + h] = 7 \) (since \( h \) is positive and small enough that it does not increase the integer part). Thus: \[ f(7 + h) = 7 \cdot 10 \cdot ((7 + h) \cdot \pi) = 7 \cdot 10 \cdot (7\pi + h\pi) = 70 \cdot (7\pi + h\pi) = 490\pi + 70h\pi \] ### Step 4: Substitute into the Derivative Formula Now we substitute \( f(7 + h) \) and \( f(7) \) into the derivative formula: \[ f'(7^+) = \lim_{h \to 0^+} \frac{(490\pi + 70h\pi) - 490\pi}{h} \] This simplifies to: \[ f'(7^+) = \lim_{h \to 0^+} \frac{70h\pi}{h} = \lim_{h \to 0^+} 70\pi = 70\pi \] ### Step 5: Conclusion Thus, the right-hand derivative of \( f(x) \) at \( x = 7 \) is: \[ f'(7^+) = 70\pi \] ### Final Answer The answer is \( 70\pi \), which is not listed in the options provided (0, \( 7\pi \), \( -7\pi \), none of these). Therefore, the correct answer is **d. none of these**.

To find the right-hand derivative of the function \( f(x) = [x] \cdot 10 \cdot (x \cdot \pi) \) at \( x = 7 \), we will follow these steps: ### Step 1: Define the Right-Hand Derivative The right-hand derivative of \( f \) at \( x = 7 \) is given by: \[ f'(7^+) = \lim_{h \to 0^+} \frac{f(7 + h) - f(7)}{h} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

Draw the graph of [y] = sin x, x in [0,2pi] where [*] denotes the greatest integer function

Period of the function f(x) = [5x + 7] + cospix - 5x where [·] denotes greatest integer function is

The period of the function f(x)= [6x+7]+cospix-6x , where [dot] denotes the greatest integer function is:

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

Draw the graph of [y] = cos x, x in [0, 2pi], where [*] denotes the greatest integer function.

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

The period of the function f(x)=[6x+7]+cospix-6x , where [dot] denotes the greatest integer function is: (a)3 (b) 2 pi (c) 2 (d) none of these