Home
Class 12
MATHS
The right hand derivative of f(x)=[x]t a...

The right hand derivative of `f(x)=[x]t a npix a tx=7` is (where [.] denotes the greatest integer function) `0` b. `7pi` c. `-7pi` d. none of these

A

0

B

`7pi`

C

`-7pi`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the right-hand derivative of the function \( f(x) = [x] \cdot 10 \cdot (x \cdot \pi) \) at \( x = 7 \), we will follow these steps: ### Step 1: Define the Right-Hand Derivative The right-hand derivative of \( f \) at \( x = 7 \) is given by: \[ f'(7^+) = \lim_{h \to 0^+} \frac{f(7 + h) - f(7)}{h} \] ### Step 2: Evaluate \( f(7) \) First, we need to find \( f(7) \): \[ f(7) = [7] \cdot 10 \cdot (7 \cdot \pi) = 7 \cdot 10 \cdot (7 \cdot \pi) = 70 \cdot 7 \cdot \pi = 490 \pi \] ### Step 3: Evaluate \( f(7 + h) \) Next, we evaluate \( f(7 + h) \): \[ f(7 + h) = [7 + h] \cdot 10 \cdot ((7 + h) \cdot \pi) \] For small \( h \), \( [7 + h] = 7 \) (since \( h \) is positive and small enough that it does not increase the integer part). Thus: \[ f(7 + h) = 7 \cdot 10 \cdot ((7 + h) \cdot \pi) = 7 \cdot 10 \cdot (7\pi + h\pi) = 70 \cdot (7\pi + h\pi) = 490\pi + 70h\pi \] ### Step 4: Substitute into the Derivative Formula Now we substitute \( f(7 + h) \) and \( f(7) \) into the derivative formula: \[ f'(7^+) = \lim_{h \to 0^+} \frac{(490\pi + 70h\pi) - 490\pi}{h} \] This simplifies to: \[ f'(7^+) = \lim_{h \to 0^+} \frac{70h\pi}{h} = \lim_{h \to 0^+} 70\pi = 70\pi \] ### Step 5: Conclusion Thus, the right-hand derivative of \( f(x) \) at \( x = 7 \) is: \[ f'(7^+) = 70\pi \] ### Final Answer The answer is \( 70\pi \), which is not listed in the options provided (0, \( 7\pi \), \( -7\pi \), none of these). Therefore, the correct answer is **d. none of these**.

To find the right-hand derivative of the function \( f(x) = [x] \cdot 10 \cdot (x \cdot \pi) \) at \( x = 7 \), we will follow these steps: ### Step 1: Define the Right-Hand Derivative The right-hand derivative of \( f \) at \( x = 7 \) is given by: \[ f'(7^+) = \lim_{h \to 0^+} \frac{f(7 + h) - f(7)}{h} \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

Draw the graph of [y] = sin x, x in [0,2pi] where [*] denotes the greatest integer function

Period of the function f(x) = [5x + 7] + cospix - 5x where [·] denotes greatest integer function is

The period of the function f(x)= [6x+7]+cospix-6x , where [dot] denotes the greatest integer function is:

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

Draw the graph of [y] = cos x, x in [0, 2pi], where [*] denotes the greatest integer function.

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

The period of the function f(x)=[6x+7]+cospix-6x , where [dot] denotes the greatest integer function is: (a)3 (b) 2 pi (c) 2 (d) none of these

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. The right hand derivative of f(x)=[x]t a npix a tx=7 is (where [.] den...

    Text Solution

    |

  2. If f(x-y)=f(x).g(y)-f(y).g(x) and g(x-y)=g(x).g(y)+f(x).f(y) for all x...

    Text Solution

    |

  3. If xe^(xy)-y=sin^(2)x then (dy)/(dx) at x = 0 is

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e...

    Text Solution

    |

  6. The derivative of cos(2tan^(-1)sqrt((1-x)/(1+x)))-2cos^(-1)sqrt((1-x)/...

    Text Solution

    |

  7. If y=(x^(2))/(2)+(1)/(2)xsqrt(x^(2)+1)+lnsqrt(x+sqrt(x^(2)+1)) then th...

    Text Solution

    |

  8. Let g(x)=f(x)sinx ,w h e r ef(x) is a twice differentiable function on...

    Text Solution

    |

  9. If f(x)=log(e)(log(e)x)/log(e)x then f'(x) at x = e is

    Text Solution

    |

  10. Let g(x)=e^(f(x))a n df(x+1)=x+f(x)AAx in Rdot If n in I^+,t h e n(g...

    Text Solution

    |

  11. d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2s...

    Text Solution

    |

  12. If t(1+x^2)=x and x^2+t^2=y, then at x=2 the value of (d y)/(d x) is e...

    Text Solution

    |

  13. if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies f(x)*{(dy)/(dx)}^3=1+(dy)/(d...

    Text Solution

    |

  14. Let y=x^3-8x+7a n dx=f(t)dot If (dy)/(dt)=2 and x=3 at t=0, then (dx)/...

    Text Solution

    |

  15. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  16. The derivative of the function represented parametrically as x=2t=|...

    Text Solution

    |

  17. If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)), u in (0...

    Text Solution

    |

  18. The differential coefficient of sin^(-1)((5cos x-4s in x)/(sqrt(41))) ...

    Text Solution

    |

  19. x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b.2 c. 3 d. 4

    Text Solution

    |

  20. If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

    Text Solution

    |