Home
Class 12
MATHS
Let a be a matrix of order 2xx2 such tha...

Let a be a matrix of order `2xx2` such that `A^(2)=O`.
`A^(2)-(a+d)A+(ad-bc)I` is equal to

A

`I`

B

`O`

C

`-I`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( A^2 - (a + d)A + (ad - bc)I \) given that \( A^2 = O \) (the null matrix). Let's denote the matrix \( A \) as follows: \[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) We know that: \[ A^2 = A \cdot A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] Calculating this gives: \[ A^2 = \begin{pmatrix} a^2 + bc & ab + bd \\ ca + dc & cb + d^2 \end{pmatrix} \] Since \( A^2 = O \), we have: \[ \begin{pmatrix} a^2 + bc & ab + bd \\ ca + dc & cb + d^2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] This implies: 1. \( a^2 + bc = 0 \) 2. \( ab + bd = 0 \) 3. \( ca + dc = 0 \) 4. \( cb + d^2 = 0 \) ### Step 2: Substitute \( A^2 \) into the expression Now we substitute \( A^2 \) into the expression: \[ A^2 - (a + d)A + (ad - bc)I \] Substituting \( A^2 = O \): \[ O - (a + d)A + (ad - bc)I \] This simplifies to: \[ -(a + d)A + (ad - bc)I \] ### Step 3: Expand the expression Now we expand \( -(a + d)A \): \[ -(a + d)A = -(a + d) \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -(a + d)a & -(a + d)b \\ -(a + d)c & -(a + d)d \end{pmatrix} \] And for \( (ad - bc)I \): \[ (ad - bc)I = (ad - bc) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} \] ### Step 4: Combine the two parts Now we combine the two matrices: \[ \begin{pmatrix} -(a + d)a + (ad - bc) & -(a + d)b \\ -(a + d)c & -(a + d)d + (ad - bc) \end{pmatrix} \] ### Step 5: Simplify the expression Now we simplify each entry: 1. First entry: \[ -(a + d)a + (ad - bc) = -a^2 - ad + ad - bc = -a^2 - bc \] 2. Second entry: \[ -(a + d)b \] 3. Third entry: \[ -(a + d)c \] 4. Fourth entry: \[ -(a + d)d + (ad - bc) = -d^2 - ad + ad - bc = -d^2 - bc \] Thus, we have: \[ \begin{pmatrix} -a^2 - bc & -(a + d)b \\ -(a + d)c & -d^2 - bc \end{pmatrix} \] ### Final Result Since \( A^2 = O \) implies \( a^2 + bc = 0 \) and \( d^2 + bc = 0 \), we can conclude that: \[ A^2 - (a + d)A + (ad - bc)I = O \]

To solve the problem, we need to evaluate the expression \( A^2 - (a + d)A + (ad - bc)I \) given that \( A^2 = O \) (the null matrix). Let's denote the matrix \( A \) as follows: \[ A = \begin{pmatrix} a & b \\ c & d ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Numerical Value Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let a be a matrix of order 2xx2 such that A^(2)=O . (I+A)^(100) =

Let a be a matrix of order 2xx2 such that A^(2)=O . tr (A) is equal to

If A is a square matrix of order 3 and I is an ldentity matrix of order 3 such that A^(3) - 2A^(2) - A + 2l =0, then A is equal to

If A is a matrix of order mxx m such that A^(2) +A + 2I = O , then

Let A be a matrix of order 3xx3 such that |A|=3 . Let B=3A^(-1) and C =(adjA)/(2) , then the value of |A^(2)B^(3)C^(4)| is

If A and B are two matrices of order 3 such that AB=O and A^(2)+B=I , then tr. (A^(2)+B^(2)) is equal to ________.

Let A be a matrix of order 3 such that A^(2)=3A-2I where, I is an identify matrix of order 3. If A^(5)=alphaA+betaI , then alphabeta is equal to

Let A be a square matrix of order 2 such that A^(2)-4A+4I=0 , where I is an identity matrix of order 2. If B=A^(5)+4A^(4)+6A^(3)+4A^(2)+A-162I , then det(B) is equal to _________

Let A and B are two non - singular matrices of order 3 such that A+B=2I and A^(-1)+B^(-1)=3I , then AB is equal to (where, I is the identity matrix of order 3)

Let A be a matrix of order 3, such that A^(T)A=I . Then find the value of det. (A^(2)-I) .