Home
Class 12
MATHS
Let M be a 3xx3 matrix satisfying M[0 1 ...

Let `M` be a `3xx3` matrix satisfying `M[0 1 0]=[-1 2 3] ,M[1-1 0]=[1 1-1],a n dM[1 1 1]=[0 0 12]` Then the sum of the diagonal entries of `M` is _________.

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the diagonal entries of the matrix \( M \), we will use the given conditions step by step. ### Step 1: Define the Matrix Let \( M \) be a \( 3 \times 3 \) matrix represented as: \[ M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] ### Step 2: Use the First Condition The first condition given is: \[ M \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \] Multiplying \( M \) by the vector: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} b \\ e \\ h \end{pmatrix} \] Setting this equal to the right-hand side: \[ \begin{pmatrix} b \\ e \\ h \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \] From this, we can conclude: \[ b = -1, \quad e = 2, \quad h = 3 \] ### Step 3: Use the Second Condition The second condition given is: \[ M \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \] Multiplying \( M \) by the vector: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} a - b \\ d - e \\ g - h \end{pmatrix} \] Setting this equal to the right-hand side: \[ \begin{pmatrix} a - b \\ d - e \\ g - h \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \] From this, we can derive: 1. \( a - b = 1 \) 2. \( d - e = 1 \) 3. \( g - h = -1 \) Substituting \( b = -1 \) and \( e = 2 \): 1. \( a - (-1) = 1 \) → \( a + 1 = 1 \) → \( a = 0 \) 2. \( d - 2 = 1 \) → \( d = 3 \) 3. \( g - 3 = -1 \) → \( g = 2 \) ### Step 4: Use the Third Condition The third condition given is: \[ M \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 12 \end{pmatrix} \] Multiplying \( M \) by the vector: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} a + b + c \\ d + e + f \\ g + h + i \end{pmatrix} \] Setting this equal to the right-hand side: \[ \begin{pmatrix} a + b + c \\ d + e + f \\ g + h + i \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 12 \end{pmatrix} \] From this, we can derive: 1. \( a + b + c = 0 \) 2. \( d + e + f = 0 \) 3. \( g + h + i = 12 \) Substituting known values: 1. \( 0 - 1 + c = 0 \) → \( c = 1 \) 2. \( 3 + 2 + f = 0 \) → \( f = -5 \) 3. \( 2 + 3 + i = 12 \) → \( i = 7 \) ### Step 5: Summing the Diagonal Entries Now we have: - \( a = 0 \) - \( e = 2 \) - \( i = 7 \) The sum of the diagonal entries is: \[ a + e + i = 0 + 2 + 7 = 9 \] Thus, the sum of the diagonal entries of \( M \) is \( \boxed{9} \).

To find the sum of the diagonal entries of the matrix \( M \), we will use the given conditions step by step. ### Step 1: Define the Matrix Let \( M \) be a \( 3 \times 3 \) matrix represented as: \[ M = \begin{pmatrix} a & b & c \\ d & e & f \\ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|11 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1 1]=[0 0 12] Then the sum of the diagonal entries of M is _________.

Let M be a 3xx3 matrix satisfying M[[0], [1] ,[0]]=[[-1], [2], [3]] , M[[1],[-1], [0]]=[[1], [1],[-1]] ,and M[[1], [1], [1]]=[[0] ,[0], [12]] Then the sum of the diagonal entries of M is _________.

Knowledge Check

  • If [{:(1, 4),(-2, 3):}] + 2 M = 3 [{:(3, 2),(0, -3):}], then the matrix M is :

    A
    `[{:(4, 1),(1, -6):}]`
    B
    `[{:(8, 2),(2, 12):}]`
    C
    `[{:(4, 1),(1, 3):}]`
    D
    `[{:(8, 2),(2, -12):}]`
  • Similar Questions

    Explore conceptually related problems

    If [2\ \ 1\ \ 3][-1 0-1-1 1 0 0 1 1][1 0-1]=A , then write the order of matrix A .

    Find the matrix A satisfying the matrix equation [2 1 3 2]A[-3 2 5-3]=[1 0 0 1]

    How many 3xx3 matrices M with entries from {0,1,2} are there, for which the sum of the diagonal entries of M^T Mi s5? 126 (b) 198 (c) 162 (d) 135

    Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

    Find the matrix A satisfying the matrix equation [(2, 1),( 3, 2)]A[(-3, 2),( 5,-3)]=[(1, 0 ),(0, 1)] .

    Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

    Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three column matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The ratio of the trace of the matrix B to the matrix C, is