Home
Class 12
MATHS
For x, y, z, t in R, sin^(-1) x + cos^(-...

For `x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi`
The value of `x + y + z` is equal to

A

1

B

0

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given inequality involving inverse trigonometric functions and find the values of \(x\), \(y\), and \(z\) such that we can compute \(x + y + z\). ### Step-by-Step Solution: 1. **Understand the ranges of the inverse trigonometric functions:** - The range of \(\sin^{-1} x\) is \([- \frac{\pi}{2}, \frac{\pi}{2}]\). - The range of \(\cos^{-1} y\) is \([0, \pi]\). - The range of \(\sec^{-1} z\) is \([0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]\). 2. **Determine the maximum values of the functions:** - The maximum value of \(\sin^{-1} x\) is \(\frac{\pi}{2}\). - The maximum value of \(\cos^{-1} y\) is \(\pi\). - The maximum value of \(\sec^{-1} z\) is \(\pi\). 3. **Combine the maximum values:** \[ \sin^{-1} x + \cos^{-1} y + \sec^{-1} z \leq \frac{\pi}{2} + \pi + \pi = \frac{5\pi}{2} \] 4. **Set up the inequality:** We have: \[ \sin^{-1} x + \cos^{-1} y + \sec^{-1} z \geq t^2 - \sqrt{2\pi t} + 3\pi \] Therefore, we can write: \[ t^2 - \sqrt{2\pi t} + 3\pi \leq \frac{5\pi}{2} \] 5. **Rearranging the inequality:** \[ t^2 - \sqrt{2\pi t} + 3\pi - \frac{5\pi}{2} \leq 0 \] Simplifying gives: \[ t^2 - \sqrt{2\pi t} + \frac{1\pi}{2} \leq 0 \] 6. **Complete the square:** To analyze the quadratic, we can complete the square: \[ 2(t - \frac{\pi}{4})^2 + \frac{1\pi}{2} - \frac{\pi}{2} \leq 0 \] This implies: \[ (t - \frac{\pi}{4})^2 \geq 0 \] Thus, \(t\) must be at least \(\frac{\pi}{2}\). 7. **Finding values of \(x\), \(y\), and \(z\):** - Set \(\sin^{-1} x = \frac{\pi}{2} \Rightarrow x = 1\). - Set \(\cos^{-1} y = \pi \Rightarrow y = -1\). - Set \(\sec^{-1} z = \pi \Rightarrow z = -1\). 8. **Calculate \(x + y + z\):** \[ x + y + z = 1 + (-1) + (-1) = 1 - 1 - 1 = -1 \] ### Final Answer: The value of \(x + y + z\) is \(-1\).

To solve the problem, we need to analyze the given inequality involving inverse trigonometric functions and find the values of \(x\), \(y\), and \(z\) such that we can compute \(x + y + z\). ### Step-by-Step Solution: 1. **Understand the ranges of the inverse trigonometric functions:** - The range of \(\sin^{-1} x\) is \([- \frac{\pi}{2}, \frac{\pi}{2}]\). - The range of \(\cos^{-1} y\) is \([0, \pi]\). - The range of \(\sec^{-1} z\) is \([0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]\). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value type|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of cos^(-1) ("min" {x, y, z}) is

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The principal value of cos^(-1) (cos 5t^(2)) is

For x,y,z,t in R , if sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*t+3pi , then the value of tan^(-1)x+tan^(-1)y+tan^(-1)z+tan^(-1)( sqrt((2)/(pi))t) is __________.

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If sin^(-1)x+sin^(-1)y+sin^(-1)z+sin^(-1)t=2pi , then find the value of x^2+y^2+z^2+t^2 .

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi, then xy + yz +zx is equal to

If x , y , z in [-1,1] such that sin^(-1)x+sin^(-1)y+sin^(-1)z=-(3pi)/2, find the value of x^2+y^2+z^2dot

If x , y , z in [-1,1] such that sin^(-1)x+sin^(-1)y+sin^(-1)z=-(3pi)/2, find the value of x^2+y^2+z^2dot

If cos e c^(-1)x+cos e c^(-1)y+cos e c^(-1)z=-(3pi)/2, find the value of x/y+y/z+z/xdot