Home
Class 12
MATHS
The solution set of inequality (cot^(-1)...

The solution set of inequality `(cot^(-1)x)(tan^(-1)x)+(2-pi/2),cot^(-1)x-3tan^(-1)x-3(2-pi/2)>0` is `(a , b),` then the value of `cot^(-1)a+cot^(-1)b` is____

Text Solution

Verified by Experts

The correct Answer is:
5

`(cot^(-1) x) (tan^(-1)x) + (2 -(pi)/(2)) cot^(-1) x - 3 tan^(-1) x 3 (2 - (pi)/(2)) gt 0`
`rArr cot^(-1) x (tan^(-1) x -(pi)/(2)) + 2 cot^(-1) x - 6 - 3 (tan^(-1) x -(pi)/(2)) gt 0`
`rArr -(cot^(-1) x)^(2) + 5 cot^(-1) x - 6 gt 0`
`rArr (cot^(-1) x -3) (2 - cot^(-1) x) gt 0`
`rArr (cot^(-1) x -3) (cot^(-1) x -2) lt 0`
`rArr 2 lt cot^(-1) x lt3`
`rArr cot 3 lt x lt cot2` [as `cot^(-1) x` is a decreasing function]
`rArr` Hence, `x in (cot3, cot2)`
`rArr cot^(-1) a + cot^(-1) b = cot^(-1) (cot 3) + cot^(-1) (cot 2) = 5`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE MAIN)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE Advanced)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-pi/2)cot^(-1)x-3tan^(-1)x-3(2-pi/2)>0 is (a , b), then the value of cot^(-1)a+cot^(-1)b is____

The solution set of inequality ( cot^(-1) x) (tan^(-1) x) + (2 - pi/2) cot^(-1) x - 3 tan^(-1) x - 3 ( 2 - pi/2) gt 0 , is

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Solve the inequality tan^(-1)xgtcot^(-1)cot^(-1)x .

Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

The solution set of inequality (tan^(-1)x)(cot^(-1)x)-(tan^(-1)x)(1+(pi)/(2))-2cot^(-1)x+2(1+(pi)/(2))gtlim_(yrarr-oo)[sec^(-1)y-(pi)/(2)] is (where [ . ]denotes the G.I.F.)

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

Solve: 5tan^(-1)x+3cot^(-1)x=2pi

Number of solutions of equation tan^(-1)(e^(-x))+cot^(-1)(|lnx|)=pi//2 is:

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Numerical value type
  1. The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-pi/2),cot^(-1...

    Text Solution

    |

  2. If x=sin^(-1)(a^6+1)+cos^(-1)(a^4+1)-tan^(-1)(a^2+1),a in R , then th...

    Text Solution

    |

  3. If the roots of the equation x^(3) -10 x + 11 = 0 are u, v, and w, the...

    Text Solution

    |

  4. The number of values of x for which sin^(-1)(x^2-(x^4)/3+(x^6)/9)+cos^...

    Text Solution

    |

  5. If the domain of the function f(x) = sqrt(3 cos^(-1) (4x) - pi) is [a,...

    Text Solution

    |

  6. If 0<cos^-1(x) <1 and 1+"sin"(cos^(-1)x)+sin^2(cos^(-1)x)+sin^3(cos^(-...

    Text Solution

    |

  7. If tan^(-1)(x+3/x)-tan^(-1)(x-3/x)=tan^(-1)6/x , then the value of x^4...

    Text Solution

    |

  8. If range of function f(x)=sin^(-1)x+2tan^(-1)x+x^2+4x+1 is [p , q], th...

    Text Solution

    |

  9. If cos^(-1)(x)+cos^(-1)(y)+cos^(-1)(z)=pi(sec^2(u)+sec^4(v)+sec^6(w)),...

    Text Solution

    |

  10. If the area enclosed by the curves f(x) = cos^(-1) (cos x) and g(x) = ...

    Text Solution

    |

  11. Absolute value of sum of all integers in the domain of f(x)=cot^(-1)sq...

    Text Solution

    |

  12. The least value of (1+sec^(-1)x)(1+c os^(-1)x) is

    Text Solution

    |

  13. Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)b epidot If x satisfies the e...

    Text Solution

    |

  14. The number of integral values of x satisfying the equation tan^(-1) (3...

    Text Solution

    |

  15. Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x...

    Text Solution

    |

  16. If the equation sin^(-1)(x^2+x+1)+cos^(-1)(lambda x+1)=pi/2 has exactl...

    Text Solution

    |

  17. sin{2(sin^(-1)(sqrt(5))/3-cos^(-1)(sqrt(5))/3)} is equal to (ksqrt(5)...

    Text Solution

    |

  18. The number of solutions of "cos"(2sin^(-1)("cot"(tan^(-1)(sec(6cos e c...

    Text Solution

    |