Home
Class 12
MATHS
If (b2-b1)(b3-b1)+(a2-a1)(a3-a1)=0, then...

If `(b_2-b_1)(b_3-b_1)+(a_2-a_1)(a_3-a_1)=0`, then prove that the circumcenter of the triangle having vertices `(a_1,b_1),(a_2,b_2)` and `(a_3,b_3)` is `((a_2+a_3)/(2),(b_2+b_3)/(2))`.

Text Solution

Verified by Experts

Given `(b_2-b_1)(b_3-b_1)+(a_2-a_1)(a_3-a_1)=0`

or `(b_2-b_1)(b_3-b_1)=-(a_2-a_1)(a_3-a_1)`
or `((b_2-b_1)/(a_2-a_1))((b_3-b_1)/(a_3-a_1))=-1`
or `("slope of AB")xx("slope of AC") =-1`
Therefore, the triangle is right -angled at point `(a_1,b_2)`. Hence, the circumcenter is the midpoint of `(a_2b_2)` and `(a_3,b_3)` which is `((a_2+a_3)/(2),(b_2+b_3)/(2))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Illustration1.48|1 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Illustration1.49|1 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Illustration1.46|1 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

If |x_1y_1 1x_2y_2 1x_3y_3 1|=|a_1b_1 1a_2b_2 1a_3b_3 1| then the two triangles with vertices (x_1, y_1),(x_2,y_2),(x_3,y_3) and (a_1,b_1),(a_2,b_2),(a_3,b_3) are equal to area (b) similar congruent (d) none of these

If |x_1y_1 1x_2y_2 1x_3y_3 1|=|a_1b_1 1a_2b_2 1a_3b_3 1| then the two triangles with vertices (x_1, y_1),(x_2,y_2),(x_3,y_3) and (a_1,b_1),(a_2,b_2),(a_3,b_3) are equal to area (b) similar congruent (d) none of these

If the points (a_1, b_1),\ \ (a_2, b_2) and (a_1+a_2,\ b_1+b_2) are collinear, show that a_1b_2=a_2b_1 .

If the lines a_1x+b_1y+1=0,\ a_2x+b_2y+1=0\ a n d\ a_3x+b_3y+1=0 are concurrent, show that the points (a_1, b_1),\ (a_2, b_2)a n d\ (a_3, b_3) are collinear.

If the lines a_1x+b_1y+1=0,\ a_2x+b_2y+1=0\ a n d\ a_3x+b_3y+1=0 are concurrent, show that the points (a_1, b_1),\ (a_2, b_2)a n d\ (a_3, b_3) are collinear.

If the equation of the locus of a point equidistant from the points (a_1,b_1) and (a_2,b_2) is (a_1-a_2)x+(b_2+b_2)y+c=0 , then the value of C is

Prove that the value of each the following determinants is zero: |[a_1,l a_1+mb_1,b_1],[a_2,l a_2+mb_2,b_2],[a_3,l a_3+m b_3,b_3]|

The equation A/(x-a_1)+A_2/(x-a_2)+A_3/(x-a_3)=0 ,where A_1,A_2,A_3gt0 and a_1lta_2lta_3 has two real roots lying in the invervals. (A) (a_1,a_2) and (a_2,a_3) (B) (-oo,a_1) and (a_3,oo) (C) (A_1,A_3) and (A_2,A_3) (D) none of these

If (a_2a_3)/(a_1a_4) = (a_2+a_3)/(a_1+a_4)=3 ((a_2 -a_3)/(a_1-a_4)) then a_1,a_2, a_3 , a_4 are in :

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot