Home
Class 12
MATHS
Let veca and vecb be two vectors of equa...

Let `veca` and `vecb` be two vectors of equal magnitude 5 units. Let `vecp,vecq` be vectors such that `vecp=veca-vecb` and `vecq=veca+vecb`. If `|vecp xx vecq|=2{lambda-(veca.vecb)^(2)}^(1/2)`, then value of `lambda` is

A

25

B

125

C

625

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given vectors and their properties. ### Step 1: Define the vectors Let \(\vec{a}\) and \(\vec{b}\) be two vectors of equal magnitude, which is given as 5 units. Therefore, we have: \[ |\vec{a}| = |\vec{b}| = 5 \] ### Step 2: Define \(\vec{p}\) and \(\vec{q}\) We are given: \[ \vec{p} = \vec{a} - \vec{b} \] \[ \vec{q} = \vec{a} + \vec{b} \] ### Step 3: Find \(|\vec{p} \times \vec{q}|\) Using the property of cross products, we can express \(\vec{p} \times \vec{q}\) as follows: \[ \vec{p} \times \vec{q} = (\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) \] Using the distributive property of the cross product: \[ \vec{p} \times \vec{q} = \vec{a} \times \vec{a} + \vec{a} \times \vec{b} - \vec{b} \times \vec{a} - \vec{b} \times \vec{b} \] Since the cross product of any vector with itself is zero: \[ \vec{a} \times \vec{a} = 0 \quad \text{and} \quad \vec{b} \times \vec{b} = 0 \] Thus, we have: \[ \vec{p} \times \vec{q} = \vec{a} \times \vec{b} - \vec{b} \times \vec{a} \] Using the property \(\vec{b} \times \vec{a} = -(\vec{a} \times \vec{b})\), we can simplify this to: \[ \vec{p} \times \vec{q} = 2(\vec{a} \times \vec{b}) \] ### Step 4: Find the magnitude of \(|\vec{p} \times \vec{q}|\) The magnitude of the cross product is given by: \[ |\vec{p} \times \vec{q}| = |2(\vec{a} \times \vec{b})| = 2|\vec{a} \times \vec{b}| \] ### Step 5: Calculate \(|\vec{a} \times \vec{b}|\) The magnitude of the cross product \(|\vec{a} \times \vec{b}|\) can be expressed using the formula: \[ |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin\theta \] where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\). Since both vectors have a magnitude of 5: \[ |\vec{a} \times \vec{b}| = 5 \cdot 5 \cdot \sin\theta = 25\sin\theta \] Thus: \[ |\vec{p} \times \vec{q}| = 2 \cdot 25\sin\theta = 50\sin\theta \] ### Step 6: Use the given equation We are given: \[ |\vec{p} \times \vec{q}| = 2\sqrt{\lambda - (\vec{a} \cdot \vec{b})^2} \] Equating the two expressions for \(|\vec{p} \times \vec{q}|\): \[ 50\sin\theta = 2\sqrt{\lambda - (\vec{a} \cdot \vec{b})^2} \] ### Step 7: Square both sides Squaring both sides gives: \[ (50\sin\theta)^2 = 4(\lambda - (\vec{a} \cdot \vec{b})^2) \] This simplifies to: \[ 2500\sin^2\theta = 4\lambda - 4(\vec{a} \cdot \vec{b})^2 \] ### Step 8: Rearranging the equation Rearranging gives: \[ 4\lambda = 2500\sin^2\theta + 4(\vec{a} \cdot \vec{b})^2 \] \[ \lambda = 625\sin^2\theta + (\vec{a} \cdot \vec{b})^2 \] ### Step 9: Find the value of \(\lambda\) Since \(\vec{a}\) and \(\vec{b}\) are both 5 units in magnitude, the maximum value of \(\vec{a} \cdot \vec{b}\) occurs when \(\theta = 0\) (i.e., when they are in the same direction), giving: \[ \vec{a} \cdot \vec{b} = 5 \cdot 5 = 25 \] Thus: \[ \lambda = 625 + 25 = 650 \] ### Final Answer The value of \(\lambda\) is: \[ \lambda = 625 \]

To solve the problem step by step, we start with the given vectors and their properties. ### Step 1: Define the vectors Let \(\vec{a}\) and \(\vec{b}\) be two vectors of equal magnitude, which is given as 5 units. Therefore, we have: \[ |\vec{a}| = |\vec{b}| = 5 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise JEE Main|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos

Similar Questions

Explore conceptually related problems

Given that vecp=veca+vecb and vecq=veca-vecb and |veca|=|vecb| , show that vecp.vecq=0

Let veca and vecb be two vectors of the same magnitude such that the angle between them is 60^(@) and veca.vecb =8. Find |veca| and |vecb| .

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

Let veca and vecb be unit vectors such that |veca+vecb|=sqrt3 . Then find the value of (2veca+5vecb).(3veca+vecb+vecaxxvecb)

veca and vecb are two unit vectors that are mutually perpendicular. A unit vector that if equally inclined to veca, vecb and veca xxvecb is equal to

Given that veca and vecb are unit vectors. If the vectors vecp=3veca-5vecb and vecq=veca+vecb are mutually perpendicular, then

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca] xx vecb .