Home
Class 12
MATHS
if A(cosalpha,sinalpha),B(sinalpha,-cosa...

if `A(cosalpha,sinalpha),B(sinalpha,-cosalpha),C(1,2)` are the vertices of Triangle ABC, Find the locsus of its centroid.

Text Solution

Verified by Experts

Let (h,k) be the triangle . Then, `h=(cosalpha+sinalpha+1)/(3)`
and `k=(sinalpha-cosalpha+2)/(3)`
or `3h-1=cosalpha+sinalpha`
and `3k-2=sinalpha-cosalpha`
Squareing and adding, we get
` (3h-1)^2+(3k-2)^2=2`
or `9(h^2+k^2)-6h-12k+3=0`
or `3(h^2+k^2)-2h-4k+1=0`
Therefore the locus of the centroid is `3(x^2+y^2)-2x-4y+1=0` .
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Solved examples|9 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Concept applications 1.1|6 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Illustration1.66|1 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

If A(cosalpha,sinalpha),B(sinalpha,-cosalpha),C(1,2) are the vertices of A B C , then as alpha varies, find the locus of its centroid.

If A=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] prove that A.A^(T)=1 Hence find A^(-1)

If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] , then verify that A^T\ A=I_2 .

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

If A=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] is identity matrix, then write the value of alpha .

A (4,8), B(-2,6) are two vertices of a triangle ABC. Find the coordinates of C if the centroid of the triangle is (2,7).

A (1, 4), B (3, 2) and C (7,5) are vertices of a triangle ABC. Find : the co-ordinates of the centroid of triangle ABC.

The points A(0,0),B(cosalpha,sinalpha) and C(cosbeta,sinbeta) are the vertices of a right-angled triangle then

P(cosalpha,sinalpha), Q(cosbeta, sinbeta) , R(cosgamma, singamma) are vertices of triangle whose orthocenter is (0, 0) then the value of cos(alpha-beta) + cos(beta-gamma) + cos(gamma-alpha) is

If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] is such that A^T=A^(-1) , find alpha .