Home
Class 12
MATHS
Show that the distance between the point...

Show that the distance between the points `P(acosalpha, asinalpha)` and `Q(a cos beta,a sinbeta)` is `2a sin(a-b)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To show that the distance between the points \( P(a \cos \alpha, a \sin \alpha) \) and \( Q(a \cos \beta, a \sin \beta) \) is given by \( 2a \sin\left(\frac{\alpha - \beta}{2}\right) \), we will follow these steps: ### Step 1: Write the distance formula The distance \( d \) between two points \( P(x_1, y_1) \) and \( Q(x_2, y_2) \) in the coordinate plane is given by: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] For our points \( P(a \cos \alpha, a \sin \alpha) \) and \( Q(a \cos \beta, a \sin \beta) \), we have: \[ d = \sqrt{(a \cos \beta - a \cos \alpha)^2 + (a \sin \beta - a \sin \alpha)^2} \] ### Step 2: Factor out \( a \) We can factor out \( a \) from both terms inside the square root: \[ d = \sqrt{a^2 \left((\cos \beta - \cos \alpha)^2 + (\sin \beta - \sin \alpha)^2\right)} \] This simplifies to: \[ d = a \sqrt{(\cos \beta - \cos \alpha)^2 + (\sin \beta - \sin \alpha)^2} \] ### Step 3: Expand the terms inside the square root Now we will expand the expression: \[ (\cos \beta - \cos \alpha)^2 + (\sin \beta - \sin \alpha)^2 \] Using the identity \( (x - y)^2 = x^2 - 2xy + y^2 \): \[ = \cos^2 \beta - 2 \cos \beta \cos \alpha + \cos^2 \alpha + \sin^2 \beta - 2 \sin \beta \sin \alpha + \sin^2 \alpha \] Using the Pythagorean identity \( \cos^2 x + \sin^2 x = 1 \): \[ = (1 + 1) - 2(\cos \beta \cos \alpha + \sin \beta \sin \alpha) \] This simplifies to: \[ = 2 - 2(\cos \beta \cos \alpha + \sin \beta \sin \alpha) \] ### Step 4: Use the cosine of the difference formula Using the cosine of the difference identity: \[ \cos(\beta - \alpha) = \cos \beta \cos \alpha + \sin \beta \sin \alpha \] We can rewrite the expression as: \[ = 2 - 2 \cos(\beta - \alpha) \] Thus, we have: \[ d = a \sqrt{2 - 2 \cos(\beta - \alpha)} \] ### Step 5: Simplify using the sine double angle identity Using the identity \( 1 - \cos \theta = 2 \sin^2\left(\frac{\theta}{2}\right) \): \[ 2 - 2 \cos(\beta - \alpha) = 2(1 - \cos(\beta - \alpha)) = 2 \cdot 2 \sin^2\left(\frac{\beta - \alpha}{2}\right) = 4 \sin^2\left(\frac{\beta - \alpha}{2}\right) \] So we have: \[ d = a \sqrt{4 \sin^2\left(\frac{\beta - \alpha}{2}\right)} = a \cdot 2 \sin\left(\frac{\beta - \alpha}{2}\right) \] ### Final Result Thus, the distance \( d \) between points \( P \) and \( Q \) is: \[ d = 2a \sin\left(\frac{\beta - \alpha}{2}\right) \]

To show that the distance between the points \( P(a \cos \alpha, a \sin \alpha) \) and \( Q(a \cos \beta, a \sin \beta) \) is given by \( 2a \sin\left(\frac{\alpha - \beta}{2}\right) \), we will follow these steps: ### Step 1: Write the distance formula The distance \( d \) between two points \( P(x_1, y_1) \) and \( Q(x_2, y_2) \) in the coordinate plane is given by: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] For our points \( P(a \cos \alpha, a \sin \alpha) \) and \( Q(a \cos \beta, a \sin \beta) \), we have: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Concept applications 1.3|10 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Concept applications 1.4|8 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Concept applications 1.1|6 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

The distance between the point ( acosalpha,asinalpha) and ( acosbeta,asinbeta) is

The distance between the points (a cosalpha, a sinalpha) and (a cosbeta, a sinbeta) where a> 0

The distance between the points (a cosalpha, a sinalpha) and (a cosbeta, a sinbeta) where a> 0

The distance between the points (a cosalpha, a sinalpha) and (a cosbeta, a sinbeta) where a> 0

If a straight line through the origin bisects the line passing through the given points (acosalpha,asinalpha) and (acosbeta,asinbeta), then the lines (a) are perpendicular (b) are parallel (c) have an angle between them of pi/4 (d) none of these

If the distance between the points P (a cos 48^@, 0) and Q(0, a cos 12^@) is d, then d^2-a^2=

If alpha-beta= constant, then the locus of the point of intersection of tangents at P(acosalpha,bsinalpha) and Q(acosbeta,bsinbeta) to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 is: (a) a circle (b) a straight line (c) an ellipse (d) a parabola

Find the distance between the following pair of points: (asinalpha,\ -bcosalpha) and (-acosalpha,\ bsinalpha) (ii) (a ,\ 0) and (0,\ b)

The angle between the lines (x^(2)+y^(2))sin^(2)alpha=(x cos beta-y sin beta)^(2) is

If x cosalpha+y sinalpha=2a, x cos beta+y sinbeta=2aand 2sin""(alpha)/(2)sin""(beta)/(2)=1, then