Home
Class 12
MATHS
Using the definition of derivative find ...

Using the definition of derivative find the derivative of `sqrt(sin x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( f(x) = \sqrt{\sin x} \) using the definition of the derivative, we will follow these steps: ### Step 1: Write the definition of the derivative The derivative of a function \( f(x) \) is defined as: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] ### Step 2: Substitute \( f(x) \) into the definition Here, we have: \[ f(x) = \sqrt{\sin x} \] Thus, we need to find \( f(x+h) \): \[ f(x+h) = \sqrt{\sin(x+h)} \] Now, substituting into the definition: \[ f'(x) = \lim_{h \to 0} \frac{\sqrt{\sin(x+h)} - \sqrt{\sin x}}{h} \] ### Step 3: Rationalize the numerator To simplify the expression, we will multiply the numerator and denominator by the conjugate of the numerator: \[ f'(x) = \lim_{h \to 0} \frac{\left(\sqrt{\sin(x+h)} - \sqrt{\sin x}\right) \left(\sqrt{\sin(x+h)} + \sqrt{\sin x}\right)}{h \left(\sqrt{\sin(x+h)} + \sqrt{\sin x}\right)} \] This gives us: \[ f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h \left(\sqrt{\sin(x+h)} + \sqrt{\sin x}\right)} \] ### Step 4: Use the sine difference identity We know that: \[ \sin(x+h) - \sin x = 2 \cos\left(\frac{(x+h)+x}{2}\right) \sin\left(\frac{h}{2}\right) \] Thus, we can rewrite the limit: \[ f'(x) = \lim_{h \to 0} \frac{2 \cos\left(x + \frac{h}{2}\right) \sin\left(\frac{h}{2}\right)}{h \left(\sqrt{\sin(x+h)} + \sqrt{\sin x}\right)} \] ### Step 5: Simplify the limit We can express \( \sin\left(\frac{h}{2}\right) \) in terms of \( h \): \[ \sin\left(\frac{h}{2}\right) \approx \frac{h}{2} \text{ as } h \to 0 \] Thus: \[ f'(x) = \lim_{h \to 0} \frac{2 \cos\left(x + \frac{h}{2}\right) \cdot \frac{h}{2}}{h \left(\sqrt{\sin(x+h)} + \sqrt{\sin x}\right)} \] This simplifies to: \[ f'(x) = \lim_{h \to 0} \frac{\cos\left(x + \frac{h}{2}\right)}{\sqrt{\sin(x+h)} + \sqrt{\sin x}} \] ### Step 6: Evaluate the limit As \( h \to 0 \): \[ \cos\left(x + \frac{h}{2}\right) \to \cos x \] And: \[ \sqrt{\sin(x+h)} + \sqrt{\sin x} \to 2\sqrt{\sin x} \] Thus: \[ f'(x) = \frac{\cos x}{2\sqrt{\sin x}} \] ### Final Answer The derivative of \( \sqrt{\sin x} \) is: \[ f'(x) = \frac{\cos x}{2\sqrt{\sin x}} \]

To find the derivative of \( f(x) = \sqrt{\sin x} \) using the definition of the derivative, we will follow these steps: ### Step 1: Write the definition of the derivative The derivative of a function \( f(x) \) is defined as: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.2|40 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find the derivative of x^(sinh x)

derivative of cosec sqrt(x)

Knowledge Check

  • Find the derivative of sin (sin x^(2)) .

    A
    1
    B
    2
    C
    0
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    derivative of tan sqrt(x)

    Find the derivative of y= sin x^ 4 .

    Find the derivative of y = e^sin x .

    Find the Derivative f(x)=cos(sin x)

    Find the derivative of sin x at x=0

    Find the derivative of y=sqrt(x^2+1) .

    derivative of sqrt("log"x)