Home
Class 12
MATHS
Find the derivative of sqrt(4-x) w.r.t. ...

Find the derivative of `sqrt(4-x)` w.r.t. `x` using the first principle.

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( f(x) = \sqrt{4 - x} \) with respect to \( x \) using the first principle, we will follow these steps: ### Step 1: Define the function and the increment Let: \[ f(x) = \sqrt{4 - x} \] Then, we define: \[ f(x + h) = \sqrt{4 - (x + h)} = \sqrt{4 - x - h} \] ### Step 2: Write the formula for the derivative using the first principle The derivative \( f'(x) \) can be expressed using the limit definition: \[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] ### Step 3: Substitute the function values into the limit Substituting \( f(x + h) \) and \( f(x) \) into the limit gives: \[ f'(x) = \lim_{h \to 0} \frac{\sqrt{4 - x - h} - \sqrt{4 - x}}{h} \] ### Step 4: Rationalize the numerator To simplify the expression, we multiply the numerator and the denominator by the conjugate of the numerator: \[ f'(x) = \lim_{h \to 0} \frac{\left(\sqrt{4 - x - h} - \sqrt{4 - x}\right) \left(\sqrt{4 - x - h} + \sqrt{4 - x}\right)}{h \left(\sqrt{4 - x - h} + \sqrt{4 - x}\right)} \] This simplifies to: \[ f'(x) = \lim_{h \to 0} \frac{(4 - x - h) - (4 - x)}{h \left(\sqrt{4 - x - h} + \sqrt{4 - x}\right)} \] ### Step 5: Simplify the expression The numerator simplifies to: \[ (4 - x - h) - (4 - x) = -h \] Thus, we have: \[ f'(x) = \lim_{h \to 0} \frac{-h}{h \left(\sqrt{4 - x - h} + \sqrt{4 - x}\right)} \] Cancelling \( h \) in the numerator and denominator gives: \[ f'(x) = \lim_{h \to 0} \frac{-1}{\sqrt{4 - x - h} + \sqrt{4 - x}} \] ### Step 6: Evaluate the limit As \( h \) approaches 0, \( \sqrt{4 - x - h} \) approaches \( \sqrt{4 - x} \): \[ f'(x) = \frac{-1}{\sqrt{4 - x} + \sqrt{4 - x}} = \frac{-1}{2\sqrt{4 - x}} \] ### Final Result Thus, the derivative of \( f(x) = \sqrt{4 - x} \) with respect to \( x \) is: \[ f'(x) = \frac{-1}{2\sqrt{4 - x}} \] ---

To find the derivative of \( f(x) = \sqrt{4 - x} \) with respect to \( x \) using the first principle, we will follow these steps: ### Step 1: Define the function and the increment Let: \[ f(x) = \sqrt{4 - x} \] Then, we define: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find the derivative of e^(sqrt(x)) w.r.t. x using the first principle.

Find the derivative of e^(sqrt(x)) w.r.t. x using the first principle.

Find the derivative of cos(sqrt(2x)) w.r.to. x

Find the derivative of tan(sqrtx) w.r.t. x ., using first principle

Find the derivative of e^x(x^2+1) w.r.t. x

Find the derivative of sqrt(2x+3) using the first principle of differentiation.

Find the derivative of sin x^(@) w.r.t. x

Find the derivative of x^x-2^(sinx) w.r.t. x

Find the derivative of x^(2) sinx w.r.t.x.

Find the derivative of sqrt(3x + 5) using first principle of derivative