Home
Class 12
MATHS
(d^n)/(dx^n)(logx)= ((n-1)!)/(x^n) (b) ...

`(d^n)/(dx^n)(logx)=` `((n-1)!)/(x^n)` (b) `(n !)/(x^n)` `((n-2)!)/(x^n)` (d) `(-1)^(n-1)((n-1)!)/(x^n)`

A

`((n-1)!)/(x^(n))`

B

`(n!)/(x^(n))`

C

`((n-2)!)/(x^(n))`

D

`(-1)^(n-1)((n-1)!)/(x^(n))`

Text Solution

AI Generated Solution

To solve the problem of finding the \( n \)-th derivative of \( \log x \), we can follow these steps: ### Step 1: Define the function Let \( y = \log x \). ### Step 2: Find the first derivative The first derivative of \( y \) with respect to \( x \) is: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|29 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|24 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

(d^n)/(dx^n)(logx)=? (a) ((n-1)!)/(x^n) (b) (n !)/(x^n) (c) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (a). (n !)/((n-1)!(n+1)!) (b). ((2n)!)/((n-1)!(n+1)!) (c). ((2n)!)/((2n-1)!(2n+1)!) (d). none of these

Knowledge Check

  • If (n^(n))/(n!)=(nx)/((n-1)!), x =

    A
    `n^(n-2)`
    B
    `n^(n-1)`
    C
    `n^(n+1)`
    D
    `n^((1)/(2))`
  • Similar Questions

    Explore conceptually related problems

    If x_1, x_2, x_3,...... x _(2n) are in A.P , then sum _(r=1)^(2n) (-1)^(r+1) x_r^2 is equal to (a) (n)/((2n-1))(x _(1)^(2) -x _(2n) ^(2)) (b) (2n)/((2n-1))(x _(1)^(2) -x _(2n) ^(2)) (c) (n)/((n-1))(x _(1)^(2) -x _(2n) ^(2)) (d) (n)/((2n+1))(x _(1)^(2) -x _(2n) ^(2))

    If A=([x,x],[x,x]) then A^(n)(n in N)= 1) ([2^nx^n,2^nx^n],[2^nx^n,2^nx^n]) 2) ([2^(n-1) x^n,2^(n-1) x^n],[2^(n-1) x^n,2^(n-1) x^n]) 3) I 4) ([2^(n) x^(n-1),2^(n) x^(n-1)],[2^(n) x^(n-1),2^(n) x^(n-1)])

    The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (n !)/((n-1)!(n+1)!) b. ((2n)!)/((n-1)!(n+1)!) c. ((2n)!)/((2n-1)!(2n+1)!) d. none of these

    Find the sum (x+2)^(n-1)+(x+2)^(n-2)(x+1)^+(x+2)^(n-3)(x+1)^2++(x+1)^(n-1) (x+2)^(n-2)-(x+1)^n b. (x+2)^(n-2)-(x+1)^(n-1) c. (x+2)^n-(x+1)^n d. none of these

    ifint(dx)/(x^2(x^n+1)^(((n-1)/n)) )=-[f(x)]^(1/n)+c ,t h e nf(x)i s (a) (1+x^n) (b) 1+x^(-1) (c) x^n+x^(-n) (d) none of these

    IfI(m , n)=int_0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n (a) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m-n))dx (b) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m+n))dx (c) I(m , n)=int_0^oo(x^(n-1))/((1+x)^(m+n))dx (d) I(m , n)=int_0^oo(x^n)/((1+x)^(m+n))dx

    The mean deviation of the series a , a+d , a+2d ,.....,a+2n from its mean is (a) ((n+1)d)/(2n+1) (b) (n d)/(2n+1) (c) (n(n+1)d)/(2n+1) (d) ((2n+1)d)/(n(n+1))