Home
Class 11
MATHS
(a)Statement 1: Vector vecc = -5hati + 7...

(a)Statement 1: Vector `vecc = -5hati + 7 hatj + 2hatk ` is along the bisector of angle between `veca = hati + 2hatj + 2hatk and vecb = 8 hati + hatj - 4hatk`.
Statement 2 : `vecc` is equally inclined to `veca and vecb`.

A

(a) Both the statements are true and statement 2 is the correct explanation for statement 1.

B

(b) Both statements are true but statement 2 is not the correct explanation for statement 1.

C

(c) Statement 1 is true and Statement 2 is false

D

(d) Statement 1 is false and Statement 2 is true.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the vector \( \vec{c} = -5 \hat{i} + 7 \hat{j} + 2 \hat{k} \) is along the bisector of the angle between the vectors \( \vec{a} = \hat{i} + 2 \hat{j} + 2 \hat{k} \) and \( \vec{b} = 8 \hat{i} + \hat{j} - 4 \hat{k} \), we will follow these steps: ### Step 1: Calculate the magnitudes of vectors \( \vec{a} \) and \( \vec{b} \) The magnitude of vector \( \vec{a} \) is calculated as follows: \[ |\vec{a}| = \sqrt{(1)^2 + (2)^2 + (2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] The magnitude of vector \( \vec{b} \) is calculated as follows: \[ |\vec{b}| = \sqrt{(8)^2 + (1)^2 + (-4)^2} = \sqrt{64 + 1 + 16} = \sqrt{81} = 9 \] ### Step 2: Find the unit vectors of \( \vec{a} \) and \( \vec{b} \) The unit vector of \( \vec{a} \): \[ \hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{\hat{i} + 2\hat{j} + 2\hat{k}}{3} = \frac{1}{3} \hat{i} + \frac{2}{3} \hat{j} + \frac{2}{3} \hat{k} \] The unit vector of \( \vec{b} \): \[ \hat{b} = \frac{\vec{b}}{|\vec{b}|} = \frac{8\hat{i} + \hat{j} - 4\hat{k}}{9} = \frac{8}{9} \hat{i} + \frac{1}{9} \hat{j} - \frac{4}{9} \hat{k} \] ### Step 3: Calculate the bisector vector The bisector vector \( \vec{d} \) of \( \vec{a} \) and \( \vec{b} \) is given by: \[ \vec{d} = |\vec{b}|\hat{a} + |\vec{a}|\hat{b} \] Substituting the values: \[ \vec{d} = 9\left(\frac{1}{3} \hat{i} + \frac{2}{3} \hat{j} + \frac{2}{3} \hat{k}\right) + 3\left(\frac{8}{9} \hat{i} + \frac{1}{9} \hat{j} - \frac{4}{9} \hat{k}\right) \] Calculating each term: \[ \vec{d} = 3\hat{i} + 6\hat{j} + 6\hat{k} + \frac{24}{9} \hat{i} + \frac{3}{9} \hat{j} - \frac{12}{9} \hat{k} \] \[ = 3\hat{i} + 6\hat{j} + 6\hat{k} + \frac{8}{3} \hat{i} + \frac{1}{3} \hat{j} - \frac{4}{3} \hat{k} \] Combining the components: \[ \vec{d} = \left(3 + \frac{8}{3}\right)\hat{i} + \left(6 + \frac{1}{3}\right)\hat{j} + \left(6 - \frac{4}{3}\right)\hat{k} \] Calculating each component: \[ \vec{d} = \frac{9}{3} + \frac{8}{3} = \frac{17}{3} \hat{i}, \quad \frac{18}{3} + \frac{1}{3} = \frac{19}{3} \hat{j}, \quad \frac{18}{3} - \frac{4}{3} = \frac{14}{3} \hat{k} \] Thus, \[ \vec{d} = \frac{17}{3} \hat{i} + \frac{19}{3} \hat{j} + \frac{14}{3} \hat{k} \] ### Step 4: Compare \( \vec{c} \) with \( \vec{d} \) Now we need to check if \( \vec{c} \) is a scalar multiple of \( \vec{d} \): Given \( \vec{c} = -5 \hat{i} + 7 \hat{j} + 2 \hat{k} \). Since \( \vec{c} \) does not match the direction of \( \vec{d} \), we conclude that: - **Statement 1** is **false**: \( \vec{c} \) is not along the bisector of \( \vec{a} \) and \( \vec{b} \). ### Step 5: Check Statement 2 To check if \( \vec{c} \) is equally inclined to \( \vec{a} \) and \( \vec{b} \), we need to verify the angles between the vectors. This can be done by checking if the dot products satisfy the condition for equal angles. Calculating the dot products: \[ \vec{c} \cdot \vec{a} = (-5)(1) + (7)(2) + (2)(2) = -5 + 14 + 4 = 13 \] \[ \vec{c} \cdot \vec{b} = (-5)(8) + (7)(1) + (2)(-4) = -40 + 7 - 8 = -41 \] Since the dot products are not equal, \( \vec{c} \) is not equally inclined to \( \vec{a} \) and \( \vec{b} \). Thus, **Statement 2** is also **false**. ### Conclusion Both statements are false.

To determine whether the vector \( \vec{c} = -5 \hat{i} + 7 \hat{j} + 2 \hat{k} \) is along the bisector of the angle between the vectors \( \vec{a} = \hat{i} + 2 \hat{j} + 2 \hat{k} \) and \( \vec{b} = 8 \hat{i} + \hat{j} - 4 \hat{k} \), we will follow these steps: ### Step 1: Calculate the magnitudes of vectors \( \vec{a} \) and \( \vec{b} \) The magnitude of vector \( \vec{a} \) is calculated as follows: \[ |\vec{a}| = \sqrt{(1)^2 + (2)^2 + (2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises MCQ|134 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

Knowledge Check

  • The projection of the vector vecA = hati - 2hatj + hatk on the vector vecB = 4hati - 4hatj + 7hatk is

    A
    `(19)/(9)`
    B
    `(38)/(9)`
    C
    `(8)/(9)`
    D
    `(4)/(9)`
  • Similar Questions

    Explore conceptually related problems

    The angle between the two vectors vecA=hati+2hatj-hatk and vecB=-hati+hatj-2hatk

    If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

    If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

    If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

    The vector component of vector vecA =3hati +4hatj +5hatk along vector vecB =hati +hatj +hatk is :

    Find the scalar product of vectors veca=2hati-hatj+2hatk and vecb=hati-3hatj-5hatk

    If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is