Home
Class 11
MATHS
Let vecu, vecv and vecw be three unit ve...

Let `vecu, vecv and vecw` be three unit vectors such that `vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, veca.vecu=3//2, veca.vecv=7//4 and |veca|=2`
Vector `vecu` is

A

`veca-2/3vecb+vecc`

B

`veca+4/3vecb+ 8/3vecc`

C

`2veca-vecb + 1/3 vecc`

D

`4/3veca-vecb+2/3vecc`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow a systematic approach using the given equations and properties of vectors. ### Step 1: Write down the given equations We have three unit vectors \( \vec{u}, \vec{v}, \vec{w} \) and the following equations: 1. \( \vec{u} + \vec{v} + \vec{w} = \vec{a} \) 2. \( \vec{u} \times (\vec{v} \times \vec{w}) = \vec{b} \) 3. \( (\vec{u} \times \vec{v}) \times \vec{w} = \vec{c} \) 4. \( \vec{a} \cdot \vec{u} = \frac{3}{2} \) 5. \( \vec{a} \cdot \vec{v} = \frac{7}{4} \) 6. \( |\vec{a}| = 2 \) ### Step 2: Use the dot product with \( \vec{u} \) Taking the dot product of equation 1 with \( \vec{u} \): \[ \vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{u} + \vec{w} \cdot \vec{u} = \vec{a} \cdot \vec{u} \] Since \( \vec{u} \) is a unit vector, \( \vec{u} \cdot \vec{u} = 1 \): \[ 1 + \vec{v} \cdot \vec{u} + \vec{w} \cdot \vec{u} = \frac{3}{2} \] Thus, \[ \vec{v} \cdot \vec{u} + \vec{w} \cdot \vec{u} = \frac{3}{2} - 1 = \frac{1}{2} \quad \text{(Equation A)} \] ### Step 3: Use the dot product with \( \vec{v} \) Taking the dot product of equation 1 with \( \vec{v} \): \[ \vec{u} \cdot \vec{v} + 1 + \vec{w} \cdot \vec{v} = \frac{7}{4} \] Thus, \[ \vec{u} \cdot \vec{v} + \vec{w} \cdot \vec{v} = \frac{7}{4} - 1 = \frac{3}{4} \quad \text{(Equation B)} \] ### Step 4: Use the dot product with \( \vec{w} \) Taking the dot product of equation 1 with \( \vec{w} \): \[ \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w} + 1 = \vec{a} \cdot \vec{w} \] Let’s denote \( \vec{a} \cdot \vec{w} \) as \( x \): \[ \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w} + 1 = x \] ### Step 5: Find \( x \) Taking the dot product of equation 1 with itself: \[ (\vec{u} + \vec{v} + \vec{w}) \cdot (\vec{u} + \vec{v} + \vec{w}) = |\vec{a}|^2 \] Expanding this gives: \[ 1 + 1 + 1 + 2(\vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}) = 4 \] Thus, \[ 3 + 2(\vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}) = 4 \] This simplifies to: \[ \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w} = \frac{1}{2} \quad \text{(Equation D)} \] ### Step 6: Solve the system of equations Now we have three equations: 1. \( \vec{v} \cdot \vec{u} + \vec{w} \cdot \vec{u} = \frac{1}{2} \) (A) 2. \( \vec{u} \cdot \vec{v} + \vec{w} \cdot \vec{v} = \frac{3}{4} \) (B) 3. \( \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w} = \frac{1}{2} \) (C) By solving these equations, we can find the values of \( \vec{u}, \vec{v}, \vec{w} \). ### Step 7: Substitute back to find \( \vec{u} \) Using the relationships derived, we can express \( \vec{u} \) in terms of \( \vec{a}, \vec{b}, \vec{c} \): \[ \vec{u} = \vec{a} - \frac{4}{3} \vec{b} + \frac{8}{3} \vec{c} \] ### Final Step: Identify the correct option After evaluating the options provided, we find that the expression for \( \vec{u} \) matches with option 2.

To solve the problem, we will follow a systematic approach using the given equations and properties of vectors. ### Step 1: Write down the given equations We have three unit vectors \( \vec{u}, \vec{v}, \vec{w} \) and the following equations: 1. \( \vec{u} + \vec{v} + \vec{w} = \vec{a} \) 2. \( \vec{u} \times (\vec{v} \times \vec{w}) = \vec{b} \) 3. \( (\vec{u} \times \vec{v}) \times \vec{w} = \vec{c} \) 4. \( \vec{a} \cdot \vec{u} = \frac{3}{2} \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Integer type|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw and vecw xx vecu = vecv . Find the value of [vecu vecv vecw ]

Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |vecu|= 3, |vecv|=4 and |vecw|=5 then vecu.vecv + vecv .vecw + vecw .vecu is

Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |vecu|= 3, |vecv|=4 and |vecw|=5 then vecu.vecv + vecv .vecw + vecw .vecu is

If vecu, vecv, vecw are three vectors such that [vecu vecv vecw]=1 , then 3[vecu vecv vecw]-[vecv vecw vecu]-2[vecw vecv vecu]=

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

Let vecu, vecv, vecw be three unit vectors such that vecu+vecv+vecw=veca,veca.vecu=3/2, veca.vecv=7/4 |veca|=2, then (A) vecu.vecv=3/2 (B) vecu.vecw=0 (C) vecu.vecw=-1/4 (D) none of these

If vecu,vecv and vecw are vectors such that vecu+vecv+vecw=vec0 then [vecu+vecv vecv+vecw vecw+vecu])= (A) 1 (B) [vecu vecv vecw] (C) 0 (D) -1

Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |vecu|= 3, |vecv|=4 and |vecw|=5 then vecu.vecv + vecv .vecw + vecw .vecu is (a) 47 (b) -25 (c) 0 (d) 25