Home
Class 11
MATHS
Let vecA , vecB and vecC be vectors of l...

Let `vecA , vecB and vecC` be vectors of legth , 3,4and 5 respectively. Let `vecA` be perpendicular to `vecB + vecC, vecB " to " vecC + vecA and vecC " to" vecA + vecB` then the length of vector `vecA + vecB+ vecC` is __________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the length of the vector \(\vec{A} + \vec{B} + \vec{C}\) given the conditions about the perpendicularity of the vectors. ### Step-by-Step Solution: 1. **Understanding the Given Conditions**: - We know that: - \(\vec{A} \perp (\vec{B} + \vec{C})\) - \(\vec{B} \perp (\vec{C} + \vec{A})\) - \(\vec{C} \perp (\vec{A} + \vec{B})\) 2. **Using the Dot Product**: - From the property of perpendicular vectors, we can write: - \(\vec{A} \cdot (\vec{B} + \vec{C}) = 0\) (1) - \(\vec{B} \cdot (\vec{C} + \vec{A}) = 0\) (2) - \(\vec{C} \cdot (\vec{A} + \vec{B}) = 0\) (3) 3. **Expanding the Dot Products**: - Expanding each equation gives: - From (1): \(\vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C} = 0\) (4) - From (2): \(\vec{B} \cdot \vec{C} + \vec{B} \cdot \vec{A} = 0\) (5) - From (3): \(\vec{C} \cdot \vec{A} + \vec{C} \cdot \vec{B} = 0\) (6) 4. **Adding the Equations**: - Adding equations (4), (5), and (6): \[ (\vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}) + (\vec{B} \cdot \vec{C} + \vec{B} \cdot \vec{A}) + (\vec{C} \cdot \vec{A} + \vec{C} \cdot \vec{B}) = 0 \] - This simplifies to: \[ 2(\vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{C} + \vec{C} \cdot \vec{A}) = 0 \] - Therefore, we conclude: \[ \vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{C} + \vec{C} \cdot \vec{A} = 0 \quad (7) \] 5. **Calculating the Length of \(\vec{A} + \vec{B} + \vec{C}\)**: - The length (magnitude) of \(\vec{A} + \vec{B} + \vec{C}\) is given by: \[ |\vec{A} + \vec{B} + \vec{C}|^2 = |\vec{A}|^2 + |\vec{B}|^2 + |\vec{C}|^2 + 2(\vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{C} + \vec{C} \cdot \vec{A}) \] - Substituting the lengths: - \(|\vec{A}| = 3\), \(|\vec{B}| = 4\), \(|\vec{C}| = 5\) - Therefore: \[ |\vec{A} + \vec{B} + \vec{C}|^2 = 3^2 + 4^2 + 5^2 + 2 \cdot 0 \] \[ = 9 + 16 + 25 = 50 \] 6. **Finding the Magnitude**: - Taking the square root gives: \[ |\vec{A} + \vec{B} + \vec{C}| = \sqrt{50} = 5\sqrt{2} \] ### Final Answer: The length of the vector \(\vec{A} + \vec{B} + \vec{C}\) is \(5\sqrt{2}\).

To solve the problem, we need to find the length of the vector \(\vec{A} + \vec{B} + \vec{C}\) given the conditions about the perpendicularity of the vectors. ### Step-by-Step Solution: 1. **Understanding the Given Conditions**: - We know that: - \(\vec{A} \perp (\vec{B} + \vec{C})\) - \(\vec{B} \perp (\vec{C} + \vec{A})\) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

Let vecA, vecB and vecC be unit vectors such that vecA.vecB = vecA.vecC=0 and the angle between vecB and vecC " be" pi//3 . Then vecA = +- 2(vecB xx vecC) .

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

vecA, vecB and vecC are vectors each having a unit magneitude. If vecA + vecB+vecC=0 , then vecA. vecB+vecB.vecC+ vecC.vecA will be:

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

If |veca|=4, |vecb|=4 and |vecc|=5 such that veca bot vecb + vecc, vecb bot (vecc + veca) and vecc bot (veca + vecb) , then |veca + vecb + vecc| is: