Home
Class 11
MATHS
From a point O inside a triangle A B C ,...

From a point `O` inside a triangle `A B C ,` perpendiculars `O D ,O Ea n dOf` are drawn to rthe sides `B C ,C Aa n dA B ,` respecrtively. Prove that the perpendiculars from `A ,B ,a n dC` to the sides `E F ,F Da n dD E` are concurrent.

Text Solution

Verified by Experts

Let the position vectors of points A,B,C,D,E and F be `veca,vecb, vecc, vecd ,vece and vecf` w.r.t O. Let perpendiculars from A to EF and from B to DF meet each other at H. let position vectors of H be `vecr`. We join CH. In order to prove the statement given in the question. it is sufficient it is sufficient to prove that CH is prependicular to DE.
Now `as OD bot BC Rightarrow vecd.(vecb-vecc)=0`
`Rightarrow vecd.vecb = vecd.vecc`
`as OE botAC Rightarrowvece.(vecc-veca)=0 Rightarrow vece.vecc=vece.veca`
as `OF bot ABRightarrow vecf. (veca-vecb)=0 Rightarrow vecf.veca=vecf.vecb`
Also `AH bot EF Rightarrow (vecr.veca) . (vece-vecf)=0`
` Rightarrow vecr.vece -vecr.vecf-veca.vece + veca.vecf=0`
`and BH bot FD Rightarrow (vecr-vecb) . (vecf-vecd)=0`
`Rightarrow vecr.vecf-vecr.vecd-vecb.vecf+vecb.vecd=0`
Adding (iv) and (v) , we get
`vecr.vece-veca.vece+veca.vecf-vecr.vecd-vecb.vecf+vecb.vecd=0`
`or vecr.(vece.vecd)- vece.vecc+vecd.vecc=0` [ using (i), (ii) and (iii))]
` or (vecr - vecc) . (vece -vecd) =0`
`Rightarrow vec(CH). vec(ED) = 0 Rightarrow CH bot ED `
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise fill in the blanks|14 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Integer type|17 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

From a point O in the interior of a A B C , perpendiculars O D ,\ O E and O F are drawn to the sides B C ,\ C A and A B respectively. Prove that: (i) A F^2+B D^2+C E^2=O A^2+O B^2+O C^2-O D^2-O E^2-O F^2 (ii) A F^2+B D^2+C E^2=A E^2+C D^2+B F^2

Let D ,Ea n dF be the middle points of the sides B C ,C Aa n dA B , respectively of a triangle A B Cdot Then prove that vec A D+ vec B E+ vec C F= vec0 .

Let D ,Ea n dF be the middle points of the sides B C ,C Aa n dA B , respectively of a triangle A B Cdot Then prove that vec A D+ vec B E+ vec C F= vec0 .

If D ,E ,F are the mid-points of the sides B C ,C Aa n dA B respectively of a triangle A B C , prove by vector method that A r e aof D E F=1/4(a r e aof A B C)dot

In an isosceles triangle A B C with A B=A C , a circle passing through B and C intersects the sides A Ba n dA C at Da n dE respectively. Prove that DE∣∣BC Bdot

If A B C is an isosceles triangle with A B=A Cdot Prove that the perpendiculars from the vertices B\ a n d\ C to their opposite sides are equal.

O is any point inside a triangle A B C . The bisector of /_A O B ,/_B O C and /_C O A meet the sides A B ,B C and C A in point D ,E and F respectively. Show that A D * B E * C F=D B * E C * F A

A B C is an isosceles triangle in which A B=A Cdot If Da n dE are the mid-points of A Ba n dA C respectively, prove that the points B ,C ,Da n dE are concylic.

If D ,E and F are three points on the sides B C ,CA and A B , respectively, of a triangle A B C show that the (B D)/(C D)=(C E)/(A E)=(A F)/(B F)=-1

In triangle A B C ,points D , Ea n dF are taken on the sides B C ,C Aa n dA B , respectively, such that (B D)/(D C)=(C E)/(E A)=(A F)/(F B)=ndot Prove that triangle D E F=(n^2-n+1)/((n+1)^2) triangle(A B C)dot