Home
Class 12
MATHS
Prove that a(b^(2) + c^(2)) cos A + b(c^...

Prove that `a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) + b^(2)) cos C = 3abc`

Text Solution

AI Generated Solution

To prove the equation \( a(b^2 + c^2) \cos A + b(c^2 + a^2) \cos B + c(a^2 + b^2) \cos C = 3abc \), we will use the projection formulas and properties of triangles. ### Step-by-Step Solution: 1. **Start with the projection formulas**: We know from the projection formulas in a triangle: \[ a = b \cos C + c \cos B ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.4|5 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.5|7 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.2|8 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

In any DeltaABC , prove that : (b^2 - c^2) cos 2A + (c^2 - a^2) cos 2B + (a^2 - b^2) cos 2C =0

In any DeltaABC , prove that : (b^2 - c^2)/(cos B + cos C) + (c^2 - a^2)/(cos C + cos A) + (a^2 - b^2)/(cos A + cos B) = 0

Prove that (cos^(2)A-sin^(2)B)+1-cos^(2)C

In the triangle ABC , in which C is the right angle, prove that : sin 2 A =(2 ab )/(c ^(2)) , cos 2 A= ( b ^(2) - a ^(2))/( c ^(2)), sin ""(A)/(2) = sqrt ((c -b)/( 2c)) , cos ""(A)/(2)= sqrt ((c +b)/( 2c)).

In any triangle ABC, prove that a^(3) cos(B - C) + b^(3) cos (C - A) + c^(3) cos (A - B) = 3 abc

Show that in any Delta ABC, a ^(3) cos 3B+3a^(2)b cos (2B-A)+3ab^(2) cos (B-2A) +b^(3) cos 3A =c^(3)

In any DeltaABC , prove that : (cos A)/(b cos C + c cos B) + (cos B)/(c cos A + a cos C) + (cos C)/(a cos B + b cos A) = (a^2 + b^2 + c^2)/(2abc)

Prove that : (sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)

In any DeltaABC , prove that : a^2 +b^2 +c^2 = 2 (bc cos A + ca cos B + ab cos C) .

If A+B+C=180^0 , prove that : cos^2 (A/2) + cos^2 (B/2) - cos^2 (C/2) = 2cos (A/2) cos (B/2) sin (C/2)