Home
Class 12
MATHS
Let E(1)={x in R :x ne 1 and (x)/(x-1) g...

Let `E_(1)={x in R :x ne 1 and (x)/(x-1) gt 0} and E_(2)={x in E_(1):sin^(-1)(log_(e)((x)/(x-1))) " is real number"}`
(Here, the inverse trigonometric function `sin^(-1)x` assumes values in `[-(pi)/(2),(pi)/(2)]`.)
Let `f:E_(1) to R` be the function defined by `f(x)=log_(e)((x)/(x-1)) and g:E_(2) to R` be the function defined by `g(x)=sin^(-1)(log_(e)((x)/(x-1))) .`

The correct option is

A

`a to s, b to q, c to p, d to p`

B

`a to r, b to r, c to u, d to t`

C

`a to s, b to q, c to p, d to u`

D

`a to s, b to r, c to u, d to t`

Text Solution

Verified by Experts

The correct Answer is:
A

`E_(1):(x)/(x-1) gt 0`
`implies x in (-oo ,0) cup (1,oo)`
Also `E_(2) : -1 lt log_(e)((x)/(x-1)) le 1`
`implies (1)/(e) le (x)/(x-1) le e`
`implies (1)/(e) le 1 +(1)/(x-1) le e`
`implies (1)/(e)-1 le (1)/(x-1) le e-1`
`implies (x-1) in (-oo, (e)/(1-e)] cup [(1)/(e-1),oo)`
`implies x in (-oo, (e)/(1-e)] cup [(1)/(e-1),oo)`
Now, `(x)/(x-1) in (0, oo)-{1} AA x in E_(1)`
`implies log_(e) ((x)/(x-1)) in (-oo,oo)-{0}`
`implies sin^(-1)(log_(e)((x)/(x-1))) in [-(pi)/(2),(pi)/(2)]-{0}`
`("considering "log_(e) ((x)/(x-1)) in [-1,1]-{0})`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Multiple Correct Answer Type)|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(sin^(-1)(3-x))/(log_(e)(|-x|-2)) , is

Let f:Rto R be a functino defined by f (x) = e ^(x) -e ^(-x), then f^(-1)(x)=

f(x)=log_(e)x, g(x)=1/(log_(x)e) . Identical function or not?

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

If f(x)=(log)_e((x^2+e)/(x^2+1)) , then the range of f(x)

Let f:R rarr R, f(x)=x+log_(e)(1+x^(2)) . Then f(x) is what kind of function

The inverse of the function of f:R to R given by f(x)=log_(a) (x+sqrt(x^(2)+1)(a gt 0, a ne 1) is

Integrate the functions (e^x)/((1+e^x)(2+e^x)

Integrate the functions (e^(2x)-1)/(e^(2x)+1)

Integrate the functions (e^(2x)-1)/(e^(2x)+1)