Home
Class 12
MATHS
Find the value of the expression sec...

Find the value of the expression
`sec610^@cosec160^@-cot380^@tan470^@`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sec 610^\circ \cdot \csc 160^\circ - \cot 380^\circ \cdot \tan 470^\circ \), we will simplify each term step by step. ### Step 1: Simplify \( \sec 610^\circ \) We know that the secant function has a periodicity of \( 360^\circ \). Thus, we can reduce \( 610^\circ \): \[ 610^\circ - 360^\circ = 250^\circ \] So, \[ \sec 610^\circ = \sec 250^\circ \] ### Step 2: Simplify \( \csc 160^\circ \) The cosecant function does not need any reduction since \( 160^\circ \) is already within the standard range. Thus, \[ \csc 160^\circ = \csc 160^\circ \] ### Step 3: Simplify \( \cot 380^\circ \) Again, using the periodicity of \( 360^\circ \): \[ 380^\circ - 360^\circ = 20^\circ \] So, \[ \cot 380^\circ = \cot 20^\circ \] ### Step 4: Simplify \( \tan 470^\circ \) Using the periodicity of \( 360^\circ \): \[ 470^\circ - 360^\circ = 110^\circ \] So, \[ \tan 470^\circ = \tan 110^\circ \] ### Step 5: Substitute the simplified values into the expression Now, substituting the simplified values back into the expression gives: \[ \sec 250^\circ \cdot \csc 160^\circ - \cot 20^\circ \cdot \tan 110^\circ \] ### Step 6: Further simplify \( \sec 250^\circ \) We know that: \[ \sec(250^\circ) = \sec(270^\circ - 20^\circ) = -\csc(20^\circ) \] ### Step 7: Simplify \( \tan 110^\circ \) Using the identity for tangent: \[ \tan(110^\circ) = -\tan(70^\circ) \] ### Step 8: Substitute these values back Now, we can substitute these values: \[ -\csc(20^\circ) \cdot \csc(160^\circ) - \cot(20^\circ) \cdot (-\tan(70^\circ)) \] ### Step 9: Use identities We know: \[ \csc(160^\circ) = \csc(180^\circ - 20^\circ) = \csc(20^\circ) \] Thus, we have: \[ -\csc(20^\circ) \cdot \csc(20^\circ) + \cot(20^\circ) \cdot \tan(70^\circ) \] ### Step 10: Use the identity \( \tan(70^\circ) = \cot(20^\circ) \) Now substituting this gives: \[ -\csc^2(20^\circ) + \cot(20^\circ) \cdot \cot(20^\circ) = -\csc^2(20^\circ) + \cot^2(20^\circ) \] ### Step 11: Use the identity \( \csc^2(\theta) - \cot^2(\theta) = 1 \) Thus, we have: \[ -\left( \csc^2(20^\circ) - \cot^2(20^\circ) \right) = -1 \] ### Final Answer So, the final value of the expression is: \[ \boxed{-1} \]

To solve the expression \( \sec 610^\circ \cdot \csc 160^\circ - \cot 380^\circ \cdot \tan 470^\circ \), we will simplify each term step by step. ### Step 1: Simplify \( \sec 610^\circ \) We know that the secant function has a periodicity of \( 360^\circ \). Thus, we can reduce \( 610^\circ \): \[ 610^\circ - 360^\circ = 250^\circ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.8|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.9|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.6|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Find the value of the expression sin[cot^(-1){cos(tan^11)}]

Compute the square of the value of the expression (4+sec 20^@)/(cosec 20^@)

Value of the expression (sec1 1^(@)sec1 9^(@)-2cot7 1^(@))/tan11^(@) is equal to

Find the value of √3 cosec 20° – sec 20°.

Without using trigonometric tables, find the value of the following expression : (sec (90°-theta).cosec theta — tan (90°-theta) cot theta + cos^2 25° + cos^2 65°)/(3tan27^@.tan63^@)

The value of the expression cosec(75^(@)+theta) - sec(15^@-theta)-tan(55^(@)+theta) + cot(35^(@)-theta) is

Find the value of : sec("cot"^(-1)16/63)

Find the value of : (tan45^(@))/(cosec30^(@))+(sec60^(@))/(cot45^(@))-(5sin90^(@))/(2cos0^(@))

The value of sin1.cos2.tan3.cot4.sec5.cosec6 is

Find the value of ("cosec"^(2)A-1)*tan^(2)A .