Home
Class 12
MATHS
The value of (3sqrt(3)+(3^(5//6))i)^(3) ...

The value of `(3sqrt(3)+(3^(5//6))i)^(3)` is (where `i=sqrt(-1)`)

A

`24`

B

`-24`

C

`-22`

D

`-21`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((3\sqrt{3} + 3^{5/6}i)^3\), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ (3\sqrt{3} + 3^{5/6}i)^3 \] We can express \(3\sqrt{3}\) in terms of powers of 3: \[ 3\sqrt{3} = 3^{1} \cdot 3^{1/2} = 3^{3/2} \] Thus, we can rewrite the expression as: \[ (3^{3/2} + 3^{5/6}i)^3 \] ### Step 2: Factor out a common term Next, we can factor out \(3^{5/6}\) from both terms: \[ = \left(3^{5/6}(3^{3/2 - 5/6} + i)\right)^3 \] Calculating \(3^{3/2 - 5/6}\): \[ 3^{3/2} = 3^{9/6} \quad \text{so} \quad 3^{3/2 - 5/6} = 3^{9/6 - 5/6} = 3^{4/6} = 3^{2/3} \] Now we have: \[ = \left(3^{5/6}(3^{2/3} + i)\right)^3 \] ### Step 3: Expand the expression Using the property of exponents: \[ = (3^{5/6})^3 \cdot (3^{2/3} + i)^3 \] Calculating \((3^{5/6})^3\): \[ (3^{5/6})^3 = 3^{15/6} = 3^{5/2} \] So now we have: \[ = 3^{5/2} \cdot (3^{2/3} + i)^3 \] ### Step 4: Calculate \((3^{2/3} + i)^3\) We can use the binomial expansion: \[ (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \] Let \(a = 3^{2/3}\) and \(b = i\): \[ = (3^{2/3})^3 + 3(3^{2/3})^2(i) + 3(3^{2/3})(i^2) + i^3 \] Calculating each term: 1. \((3^{2/3})^3 = 3^{2}\) 2. \(3(3^{2/3})^2(i) = 3 \cdot 3^{4/3}i = 3^{7/3}i\) 3. \(3(3^{2/3})(i^2) = 3(3^{2/3})(-1) = -3^{5/3}\) 4. \(i^3 = -i\) Combining these: \[ = 3^2 + 3^{7/3}i - 3^{5/3} - i \] \[ = 9 - 3^{5/3} + (3^{7/3} - 1)i \] ### Step 5: Combine the results Now substituting back: \[ = 3^{5/2} \cdot (9 - 3^{5/3} + (3^{7/3} - 1)i) \] Distributing \(3^{5/2}\): \[ = 3^{5/2} \cdot 9 - 3^{5/2} \cdot 3^{5/3} + 3^{5/2} \cdot (3^{7/3} - 1)i \] Calculating \(3^{5/2} \cdot 3^{5/3}\): \[ 3^{5/2 + 5/3} = 3^{(15/6 + 10/6)} = 3^{25/6} \] Calculating \(3^{5/2} \cdot (3^{7/3} - 1)\): \[ 3^{5/2} \cdot 3^{7/3} = 3^{(15/6 + 14/6)} = 3^{29/6} \] Thus, we have: \[ = 3^{5/2} \cdot 9 - 3^{25/6} + (3^{29/6} - 3^{5/2})i \] ### Final Answer The value of \((3\sqrt{3} + 3^{5/6}i)^3\) is: \[ = 3^{5/2} \cdot 9 - 3^{25/6} + (3^{29/6} - 3^{5/2})i \]

To solve the expression \((3\sqrt{3} + 3^{5/6}i)^3\), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ (3\sqrt{3} + 3^{5/6}i)^3 \] We can express \(3\sqrt{3}\) in terms of powers of 3: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

sqrt((-8-6i)) is equal to (where, i=sqrt(-1)

The value of sum_(r=-3)^(1003)i^(r)(where i=sqrt(-1)) is

If z=sqrt(3)-2+i , then principal value of argument z is (where i=sqrt(-1) (1) -(5pi)/(12) (2) pi/(12) (3) (7pi)/(12) (4) (5pi)/(12)

The value of (i+sqrt3)^(100)+(i-sqrt3)^(100)+2^(100) is

Find the value of 6/(sqrt(5)-\ sqrt(3)) , it being given that sqrt(3)=1. 732\ \ a n d\ \ sqrt(5)=2. 236

(i) Obtain the binomial expansion of (2- sqrt(3) )^(6) in the form a+b sqrt(3) , where a and b are integers. State the corresponding result for the expansion ( 2+ sqrt(3) )^(6)

Evaluate the following: (i) (2 + sqrt(5) )^(5) + (2 - sqrt(5) )^(5) (ii) ( sqrt(3) + 1)^(5) - ( sqrt(3) - 1)^(5) Hence, show in (ii), without using tables, that the value of ( sqrt(3) + 1)^(5) lies between 152 and 153.

The value of 6+(log)_(3/2)[1/(3sqrt(2)) * sqrt{ (4 - 1/(3sqrt(2))) sqrt(4 - 1/(3sqrt(2))....... } is ...............

(i) If x = (6ab)/(a + b) , find the value of : (x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) . (ii) a = (4sqrt(6))/(sqrt(2) + sqrt(3)) , find the value of : (a + 2sqrt(2))/(a - 2sqrt(2)) + (a + 2sqrt(3))/(a - 2sqrt(3)) .

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is