Home
Class 12
MATHS
If 3x^(2)-2ax+(a^(2)+2b^(2)+2c^(2))=2(ab...

If `3x^(2)-2ax+(a^(2)+2b^(2)+2c^(2))=2(ab+bc)`, then `a`, `b`, `c` can be in

A

`A.P.`

B

`G.P.`

C

`H.P.`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3x^2 - 2ax + (a^2 + 2b^2 + 2c^2) = 2(ab + bc)\), we need to analyze the given polynomial and determine the relationship between \(a\), \(b\), and \(c\). ### Step-by-Step Solution: 1. **Rearranging the Equation**: Start with the original equation: \[ 3x^2 - 2ax + (a^2 + 2b^2 + 2c^2) - 2(ab + bc) = 0 \] This simplifies to: \[ 3x^2 - 2ax + (a^2 - 2ab + 2b^2 + 2c^2 - 2bc) = 0 \] 2. **Grouping Terms**: We can rewrite the constant term: \[ a^2 - 2ab + 2b^2 + 2c^2 - 2bc = (a - b)^2 + (b - c)^2 + (c - c)^2 \] This means we can express the equation as: \[ 3x^2 - 2ax + \left((a - b)^2 + (b - c)^2 + (c - c)^2\right) = 0 \] 3. **Identifying Roots**: The equation can be expressed in terms of squares: \[ (x - (a + b))^2 + (x - (b + c))^2 + (x - c)^2 = 0 \] Since these are squares, each term must equal zero for the entire expression to equal zero. 4. **Setting Each Square to Zero**: From the squares, we have: \[ x - (a + b) = 0 \quad \Rightarrow \quad x = a + b \] \[ x - (b + c) = 0 \quad \Rightarrow \quad x = b + c \] \[ x - c = 0 \quad \Rightarrow \quad x = c \] 5. **Equating the Roots**: Since all expressions equal \(x\), we can equate them: \[ a + b = b + c = c \] 6. **Finding Relationships**: From \(a + b = b + c\), we can simplify to: \[ a = c \] From \(b + c = c\), we can simplify to: \[ b = 0 \] 7. **Conclusion**: Since we have \(a = c\) and \(b = 0\), we can express \(a\), \(b\), and \(c\) as: \[ a, 0, a \] This indicates that \(a\), \(b\), and \(c\) are in Arithmetic Progression (AP) because the middle term \(b\) is the average of \(a\) and \(c\). ### Final Answer: Thus, \(a\), \(b\), and \(c\) can be in **Arithmetic Progression (AP)**.

To solve the equation \(3x^2 - 2ax + (a^2 + 2b^2 + 2c^2) = 2(ab + bc)\), we need to analyze the given polynomial and determine the relationship between \(a\), \(b\), and \(c\). ### Step-by-Step Solution: 1. **Rearranging the Equation**: Start with the original equation: \[ 3x^2 - 2ax + (a^2 + 2b^2 + 2c^2) - 2(ab + bc) = 0 ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|66 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( MATRIX MATCH TYPE )|3 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are real numbers such that 3(a^(2)+b^(2)+c^(2)+1)=2(a+b+c+ab+bc+ca) , than a,b,c are in

If a-b-c= 3 and a^(2) + b^(2) + c^(2) = 77 , find: ab- bc+ ca

If a^(2) + b^(2) + c^(2) = 50 and ab +bc + ca= 47 , find a + b+ c

If a^(2) + b^(2) + c^(2) = 35 and ab+ bc + ca= 23 , find a + b+ c

If quadratic equation ax^(2) + bx + ab + bc + ca - a^(2) - b^(2) - c^(2) = 0 where a, b, c distinct reals, has imaginary roots than (A) a+b+ab+bc+calta^(2)+b^(2)+c^(2) (B) a-b+ab+bc+cagta^(2)+b^(2)+c^(2) (C) 4a+2b+ab+bc+calta^(2)+b^(2)+c^(2) (D) 2(a+-3b)-9{(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}lt0

If a^(2) + b^(2) + c^(2) = 29 and a + b + c = 9 , find: ab + bc + ca

If a + b- c = 4 and a^(2) + b^(2) + c^(2)= 38 , find ab- bc - ca

Find : a^(2) + b^(2) + c^(2) , if a+ b+ c = 9 and ab+ bc + ca = 24

Suppose A, B, C are defined as A = a^(2)b + ab^(2) - a^(2)c - ac^(2), B = b^(2)c + bc^(2) - a^(2)b - ab^(2) , and C = a^(2)c + ac^(2) - b^(2)c - bc^(2) , where a gt b gt c gt 0 and the equation Ax^(2) + Bx + C = 0 has equal roots, then a, b, c are in

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to