Home
Class 12
MATHS
For an increasing A.P. a1, a2, an ifa1=...

For an increasing A.P. `a_1, a_2, a_n ifa_1=a_2+a_3+a_5=-12` and `a_1a_3a_5=80 ,` then which of the following is/are true? `a_1=-10` b. `a_2=-1` c. `a_3=-4` d. `a_5=+2`

A

`a_1=-10`

B

`a_2=-1`

C

`a_3 =-4`

D

`a_5 = +2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of the terms in the arithmetic progression (A.P.) given the conditions: 1. \( a_1 + a_3 + a_5 = -12 \) 2. \( a_1 a_3 a_5 = 80 \) ### Step 1: Express the terms of the A.P. In an A.P., the \( n \)-th term can be expressed as: - \( a_1 = a \) - \( a_2 = a + d \) - \( a_3 = a + 2d \) - \( a_4 = a + 3d \) - \( a_5 = a + 4d \) ### Step 2: Set up the first equation From the first condition: \[ a_1 + a_3 + a_5 = a + (a + 2d) + (a + 4d) = 3a + 6d = -12 \] We can simplify this to: \[ 3a + 6d = -12 \quad \Rightarrow \quad a + 2d = -4 \quad \text{(Equation 1)} \] ### Step 3: Set up the second equation From the second condition: \[ a_1 a_3 a_5 = a \cdot (a + 2d) \cdot (a + 4d) = 80 \] Substituting \( a + 2d = -4 \) into the equation: \[ a \cdot (-4) \cdot (a + 4d) = 80 \] We need to express \( a + 4d \) in terms of \( a \): From Equation 1, we have: \[ d = \frac{-4 - a}{2} \] Substituting \( d \) into \( a + 4d \): \[ a + 4d = a + 4\left(\frac{-4 - a}{2}\right) = a - 8 - 2a = -8 - a \] Thus, the equation becomes: \[ a \cdot (-4) \cdot (-8 - a) = 80 \] This simplifies to: \[ 4a(8 + a) = 80 \] Dividing both sides by 4: \[ a(8 + a) = 20 \] Rearranging gives us: \[ a^2 + 8a - 20 = 0 \quad \text{(Equation 2)} \] ### Step 4: Solve the quadratic equation Using the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = 8, c = -20 \): \[ D = b^2 - 4ac = 8^2 - 4 \cdot 1 \cdot (-20) = 64 + 80 = 144 \] \[ a = \frac{-8 \pm \sqrt{144}}{2 \cdot 1} = \frac{-8 \pm 12}{2} \] Calculating the two possible values: 1. \( a = \frac{4}{2} = 2 \) 2. \( a = \frac{-20}{2} = -10 \) ### Step 5: Find corresponding \( d \) values Using \( a = -10 \): \[ a + 2d = -4 \quad \Rightarrow \quad -10 + 2d = -4 \quad \Rightarrow \quad 2d = 6 \quad \Rightarrow \quad d = 3 \] Using \( a = 2 \): \[ 2 + 2d = -4 \quad \Rightarrow \quad 2d = -6 \quad \Rightarrow \quad d = -3 \] Since the A.P. is increasing, we discard \( a = 2, d = -3 \). ### Step 6: Calculate the terms Now, with \( a = -10 \) and \( d = 3 \): - \( a_1 = -10 \) - \( a_2 = -10 + 3 = -7 \) - \( a_3 = -10 + 6 = -4 \) - \( a_5 = -10 + 12 = 2 \) ### Conclusion The values are: - \( a_1 = -10 \) - \( a_2 = -7 \) - \( a_3 = -4 \) - \( a_5 = 2 \) ### Verification of Options - **Option a**: \( a_1 = -10 \) (True) - **Option b**: \( a_2 = -1 \) (False) - **Option c**: \( a_3 = -4 \) (True) - **Option d**: \( a_5 = 2 \) (True) ### Final Answer The true statements are: - a. \( a_1 = -10 \) - c. \( a_3 = -4 \) - d. \( a_5 = 2 \)

To solve the problem, we need to find the values of the terms in the arithmetic progression (A.P.) given the conditions: 1. \( a_1 + a_3 + a_5 = -12 \) 2. \( a_1 a_3 a_5 = 80 \) ### Step 1: Express the terms of the A.P. In an A.P., the \( n \)-th term can be expressed as: - \( a_1 = a \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( MATRIX MATCH TYPE )|3 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise Single correct Answer|54 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

For an increasing A.P. a_1, a_2, a_n ifa_1=a_2+a_3+a_5=-12 and a_1a_3a_5=80 , then which of the following is/are true? a. a_1=-10 b. a_2=-1 c. a_3=-4 d. a_5=+2

If for an A.P. a_1,a_2,a_3,........,a_n,........a_1+a_3+a_5=-12 and a_1a_2a_3=8, then the value of a_2+a_4+a_6 equals

For any three sets A_1,A_2, A_3 , let B_1=A_1, B_2 = A_2-A_1 and B_3 = A_3-(A_1uuA_2) , then which one of the following statement is always true

Evaluate: /_\ |[1+a_1, a_2, a_3],[a_1, 1+a_2, a_3],[a_1, a_2, 1+a_3]|

Evaluate: /_\ |[1+a_1, a_2, a_3],[a_1, 1+a_2, a_3],[a_1, a_2, 1+a_3]|

Consider an A. P .a_1,a_2,a_3,..... such that a_3+a_5+a_8 =11and a_4+a_2=-2 then the value of a_1+a_6+a_7 is.....

Three distinct numbers a_1 , a_2, a_3 are in increasing G.P. a_1^2 + a_2^2 + a_3^2 = 364 and a_1 + a_2 + a_3 = 26 then the value of a_10 if a_n is the n^(th) term of the given G.P. is: A. 2.3^9 B. 3^9 C. 2.3^(10) D. 3^(12)

Let {a_n} bc a G.P. such that a_4/a_6=1/4 and a_2+a_5=216 . Then a_1=

a_1,a_2, a_3, ,a_n are in A.P. and a_1+a_3+a_5+a_7+a_9=20 then a_5 is 2 2. 7 3. 3 4. 4 5. 5

Consider an A.P. a_1, a_2, a_3,......... such that a_3+a_5+a_8=11 and a_4+a_2=-2, then the value of a_1+a_6+a_7 is (a). -8 (b). 5 (c). 7 (d). 9