Home
Class 12
MATHS
If A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}]and...

If `A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}]`and `B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}]`, then `(A+B)^(2)=`

A

`A`

B

`B`

C

`I`

D

`A^(2)+B^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \((A + B)^2\) where: \[ A = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix} \] and \[ B = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix} \] ### Step 1: Use the identity for \((A + B)^2\) We know that: \[ (A + B)^2 = A^2 + B^2 + 2AB \] ### Step 2: Calculate \(AB\) To find \(AB\), we multiply matrix \(A\) by matrix \(B\): \[ AB = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix} \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix} \] Calculating each element of the resulting matrix: 1. First row: - First column: \(0 \cdot a^2 + c \cdot ab + (-b) \cdot ac = cab - bac = 0\) - Second column: \(0 \cdot ab + c \cdot b^2 + (-b) \cdot bc = cb^2 - b^2c = 0\) - Third column: \(0 \cdot ac + c \cdot bc + (-b) \cdot c^2 = c^2b - bc^2 = 0\) 2. Second row: - First column: \(-c \cdot a^2 + 0 \cdot ab + a \cdot ac = -ca^2 + a^2c = 0\) - Second column: \(-c \cdot ab + 0 \cdot b^2 + a \cdot bc = -cab + abc = 0\) - Third column: \(-c \cdot ac + 0 \cdot bc + a \cdot c^2 = -ac^2 + ac^2 = 0\) 3. Third row: - First column: \(b \cdot a^2 + (-a) \cdot ab + 0 \cdot ac = ba^2 - ab^2 = 0\) - Second column: \(b \cdot ab + (-a) \cdot b^2 + 0 \cdot bc = ab^2 - ab^2 = 0\) - Third column: \(b \cdot ac + (-a) \cdot bc + 0 \cdot c^2 = abc - abc = 0\) Thus, we find: \[ AB = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] ### Step 3: Calculate \(A^2\) and \(B^2\) Since \(AB\) is the zero matrix, we can simplify our expression for \((A + B)^2\): \[ (A + B)^2 = A^2 + B^2 + 2 \cdot 0 = A^2 + B^2 \] ### Step 4: Conclusion We conclude that: \[ (A + B)^2 = A^2 + B^2 \]

To solve the problem, we need to find \((A + B)^2\) where: \[ A = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(0," "c,-b),(-c," "0," "a),(b,-a," "0):}]" and "B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}] , show that AB is a zero matrix.

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

Find the product of the following two matrices [(0,c,-b),(c,0,a),(b,-a,0)] and [(a^2,ab,ac),(ab,b^2,bc),(ac,bc,c^2)] .

If A=[[0 ,c,-b],[-c, 0, a],[ b, -a, 0]] and B=[[a^2, ab, ac],[ ab, b^2 , bc],[ ac ,bc, c^2]] , show that A B=B A=O_3xx3 .

Prove the following by multiplication of determinants and power cofactor formula |{:(0,c,b),(c,0,a),(b,a,0):}|^(2)=|{:(b^(2)+v^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b^(2)):}| =|{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}|=4a^(2)b^(2)c^(2)

Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

"If "f(x)=|{:(x+a^(2),ab,ac),(ab, x+b^(2),bc),(ac,bc, x+c^(2)):}|," then prove that " f'(x)=3x^(2)+2x(a^(2)+b^(2)+c^(2)) .

"If "f(x)=|{:(x+a^(2),ab,ac),(ab, x+b^(2),bc),(ac,bc, x+c^(2)):}|," then prove that " f'(x)=3x^(2)+2x(a^(2)+b^(2)+c^(2)) .

Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Prove that : |{:(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2)):}|=4a^(2)b^(2)c^(2)