Home
Class 12
MATHS
The area enclosed by the curves y=sinx+c...

The area enclosed by the curves `y=sinx+cosx and y=|cosx−sinx|` over the interval `[0,pi/2]` is (a) `4(sqrt2-1)` (b) `2sqrt2(sqrt2-1)` (c) `2(sqrt2+1)` (d) `2sqrt2(sqrt2+1)`

A

`4(sqrt(2)-1)`

B

`2sqrt(2)(sqrt(2)-1)`

C

`2(sqrt(2)+1)`

D

`2sqrt(2)(sqrt(2)+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area enclosed by the curves \(y = \sin x + \cos x\) and \(y = |\cos x - \sin x|\) over the interval \([0, \frac{\pi}{2}]\), we will follow these steps: ### Step 1: Identify the curves and their intersection points The first curve is \(y = \sin x + \cos x\) and the second curve is \(y = |\cos x - \sin x|\). We need to find the points where these two curves intersect within the interval \([0, \frac{\pi}{2}]\). To find the intersection points, we set: \[ \sin x + \cos x = |\cos x - \sin x| \] ### Step 2: Analyze the absolute value The expression \(|\cos x - \sin x|\) can be split into two cases based on the values of \(\cos x\) and \(\sin x\): 1. **Case 1**: When \(\cos x \geq \sin x\) (which occurs in the interval \([0, \frac{\pi}{4}]\)): \[ |\cos x - \sin x| = \cos x - \sin x \] Therefore, we solve: \[ \sin x + \cos x = \cos x - \sin x \] Simplifying gives: \[ 2\sin x = 0 \implies \sin x = 0 \implies x = 0 \] 2. **Case 2**: When \(\cos x < \sin x\) (which occurs in the interval \((\frac{\pi}{4}, \frac{\pi}{2}]\)): \[ |\cos x - \sin x| = \sin x - \cos x \] Therefore, we solve: \[ \sin x + \cos x = \sin x - \cos x \] Simplifying gives: \[ 2\cos x = 0 \implies \cos x = 0 \implies x = \frac{\pi}{2} \] The curves intersect at \(x = 0\) and \(x = \frac{\pi}{4}\). ### Step 3: Set up the integral for the area The area \(A\) between the curves from \(0\) to \(\frac{\pi}{4}\) is given by: \[ A = \int_0^{\frac{\pi}{4}} \left((\sin x + \cos x) - (\cos x - \sin x)\right) \, dx \] ### Step 4: Simplify the integral In the interval \([0, \frac{\pi}{4}]\): \[ A = \int_0^{\frac{\pi}{4}} \left(2\sin x\right) \, dx \] ### Step 5: Calculate the integral Now we compute the integral: \[ A = 2 \int_0^{\frac{\pi}{4}} \sin x \, dx \] The integral of \(\sin x\) is \(-\cos x\), so: \[ A = 2 \left[-\cos x\right]_0^{\frac{\pi}{4}} = 2 \left[-\cos\left(\frac{\pi}{4}\right) + \cos(0)\right] \] \[ = 2 \left[-\frac{1}{\sqrt{2}} + 1\right] = 2 \left(1 - \frac{1}{\sqrt{2}}\right) = 2\left(\frac{\sqrt{2} - 1}{\sqrt{2}}\right) = \frac{2(\sqrt{2} - 1)}{\sqrt{2}} \] ### Step 6: Calculate the area from \(\frac{\pi}{4}\) to \(\frac{\pi}{2}\) For the interval \([\frac{\pi}{4}, \frac{\pi}{2}]\): \[ A = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left((\sin x + \cos x) - (\sin x - \cos x)\right) \, dx \] This simplifies to: \[ A = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(2\cos x\right) \, dx \] Calculating this integral gives: \[ A = 2 \left[\sin x\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = 2 \left[\sin\left(\frac{\pi}{2}\right) - \sin\left(\frac{\pi}{4}\right)\right] = 2 \left[1 - \frac{1}{\sqrt{2}}\right] \] ### Step 7: Combine the areas The total area is: \[ A_{total} = 2 \left(1 - \frac{1}{\sqrt{2}}\right) + 2 \left(1 - \frac{1}{\sqrt{2}}\right) = 4\left(1 - \frac{1}{\sqrt{2}}\right) \] ### Final Result Thus, the area enclosed by the curves is: \[ A = 2\sqrt{2}(\sqrt{2} - 1) \]

To find the area enclosed by the curves \(y = \sin x + \cos x\) and \(y = |\cos x - \sin x|\) over the interval \([0, \frac{\pi}{2}]\), we will follow these steps: ### Step 1: Identify the curves and their intersection points The first curve is \(y = \sin x + \cos x\) and the second curve is \(y = |\cos x - \sin x|\). We need to find the points where these two curves intersect within the interval \([0, \frac{\pi}{2}]\). To find the intersection points, we set: \[ \sin x + \cos x = |\cos x - \sin x| ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • AREA

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|3 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • APPLICATIONS OF DERIVATIVES

    CENGAGE ENGLISH|Exercise Comprehension Type|5 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Matrix|4 Videos

Similar Questions

Explore conceptually related problems

The area enclosed by the curves y= sinx+cosx and y = | cosx-sin x | over the interval [0,pi/2]

The area enclosed by the curve y=sinx+cosxa n dy=|cosx-sinx| over the interval [0,pi/2] is (a)4(sqrt(2)-2) (b) 2sqrt(2) ( sqrt(2) -1) (c)2(sqrt(2) +1) (d) 2sqrt(2)(sqrt(2)+1)

The area under the curve y=|cosx-sinx|, 0 le x le pi/2 , and above x-axis is: (A) 2sqrt(2)+2 (B) 0 (C) 2sqrt(2)-2 (D) 2sqrt(2)

If the point P(a ,a^2) lies completely inside the triangle formed by the lines x=0,y=0, and x+y=2, then find the exhaustive range of values of a is (A) (0,1) (B) (1,sqrt2) (C) (sqrt2 -1,1) (D) (sqrt2 -1,2)

The area of the region bounded by the curves y=sqrt[[1+sinx]/cosx] and y=sqrt[[1-sinx]/cosx] bounded by the lines x=0 and x=pi/4 is

The area of the region bounded by the curves y=sqrt[[1+sinx]/cosx] and y=sqrt[[1-sinx]/cosx] bounded by the lines x=0 and x=pi/4 is

If cosx=(2cosy-1)/(2-cosy), where x , y in (0,pi) then tan(x/2)xxcot(y/2) is equal to (a) sqrt(2) (b) sqrt(3) (c) 1/(sqrt(2)) (d) 1/(sqrt(3))

If y=|cosx|+|sinx|,t h e n(dy)/(dx)a tx=(2pi)/3 is (1-sqrt(3))/2 (b) 0 (c) 1/2(sqrt(3)-1) (d) none of these

If 0ltxltpi and cosx + sinx =1/2 , then tanx is (1) (4-sqrt(7))/3 (2) -(4+sqrt(7))/3 ( 3) (1+sqrt(7))/4 (4) (1-sqrt(7))/4

If (0,1),(1,1)a n d(1,0) be the middle points of the sides of a triangle, its incentre is (2+sqrt(2),2+sqrt(2) ) (b) [2+sqrt(2),-(2+sqrt(2))] (2-sqrt(2),2-sqrt(2)) (d) [2-sqrt(2),(2+sqrt(2))]