The incentre of a triangle with vertices `(7, 1),(-1, 5)` and `(3+2sqrt(3),3+4sqrt(3))` is
A
`(3+(2)/(sqrt(3)),3+(4)/(sqrt(3)))`
B
`(1+(2)/(3sqrt(3)),1+(4)/(3sqrt(3)))`
C
`(7,1)`
D
None of these
Text Solution
AI Generated Solution
The correct Answer is:
To find the incenter of the triangle with vertices \( A(7, 1) \), \( B(-1, 5) \), and \( C(3 + 2\sqrt{3}, 3 + 4\sqrt{3}) \), we will follow these steps:
### Step 1: Calculate the lengths of the sides of the triangle
1. **Calculate side \( a \)** (opposite vertex \( A \)):
\[
a = BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2}
\]
Substituting the coordinates:
\[
a = \sqrt{(3 + 2\sqrt{3} - (-1))^2 + (3 + 4\sqrt{3} - 5)^2}
\]
Simplifying:
\[
a = \sqrt{(4 + 2\sqrt{3})^2 + (4\sqrt{3} - 2)^2}
\]
Expanding the squares:
\[
a = \sqrt{(16 + 16\sqrt{3} + 12) + (48 - 16\sqrt{3} + 4)}
\]
\[
a = \sqrt{80} = 4\sqrt{5}
\]
2. **Calculate side \( b \)** (opposite vertex \( B \)):
\[
b = AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2}
\]
Substituting the coordinates:
\[
b = \sqrt{(3 + 2\sqrt{3} - 7)^2 + (3 + 4\sqrt{3} - 1)^2}
\]
Simplifying:
\[
b = \sqrt{(2\sqrt{3} - 4)^2 + (4\sqrt{3} + 2)^2}
\]
Expanding the squares:
\[
b = \sqrt{(12 - 16\sqrt{3} + 16) + (48 + 16\sqrt{3} + 4)}
\]
\[
b = \sqrt{80} = 4\sqrt{5}
\]
3. **Calculate side \( c \)** (opposite vertex \( C \)):
\[
c = AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}
\]
Substituting the coordinates:
\[
c = \sqrt{(-1 - 7)^2 + (5 - 1)^2}
\]
Simplifying:
\[
c = \sqrt{64 + 16} = \sqrt{80} = 4\sqrt{5}
\]
### Step 2: Use the incenter formula
The coordinates of the incenter \( I \) of a triangle can be calculated using the formula:
\[
I_x = \frac{a x_A + b x_B + c x_C}{a + b + c}, \quad I_y = \frac{a y_A + b y_B + c y_C}{a + b + c}
\]
Substituting the values we found:
- \( a = 4\sqrt{5} \)
- \( b = 4\sqrt{5} \)
- \( c = 4\sqrt{5} \)
Calculating \( I_x \):
\[
I_x = \frac{4\sqrt{5} \cdot 7 + 4\sqrt{5} \cdot (-1) + 4\sqrt{5} \cdot (3 + 2\sqrt{3})}{4\sqrt{5} + 4\sqrt{5} + 4\sqrt{5}}
\]
\[
= \frac{4\sqrt{5} (7 - 1 + 3 + 2\sqrt{3})}{12\sqrt{5}} = \frac{4\sqrt{5} (9 + 2\sqrt{3})}{12\sqrt{5}} = \frac{9 + 2\sqrt{3}}{3}
\]
Calculating \( I_y \):
\[
I_y = \frac{4\sqrt{5} \cdot 1 + 4\sqrt{5} \cdot 5 + 4\sqrt{5} \cdot (3 + 4\sqrt{3})}{4\sqrt{5} + 4\sqrt{5} + 4\sqrt{5}}
\]
\[
= \frac{4\sqrt{5} (1 + 5 + 3 + 4\sqrt{3})}{12\sqrt{5}} = \frac{4\sqrt{5} (9 + 4\sqrt{3})}{12\sqrt{5}} = \frac{9 + 4\sqrt{3}}{3}
\]
### Final Result
Thus, the coordinates of the incenter \( I \) are:
\[
I\left(\frac{9 + 2\sqrt{3}}{3}, \frac{9 + 4\sqrt{3}}{3}\right)
\]
To find the incenter of the triangle with vertices \( A(7, 1) \), \( B(-1, 5) \), and \( C(3 + 2\sqrt{3}, 3 + 4\sqrt{3}) \), we will follow these steps:
### Step 1: Calculate the lengths of the sides of the triangle
1. **Calculate side \( a \)** (opposite vertex \( A \)):
\[
a = BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2}
\]
...
The distance between the orthocentre and circumcentre of the triangle with vertices (1,2),\ (2,1)\ a n d\ ((3+sqrt(3))/2,(3+sqrt(3))/2) is a. 0 b. sqrt(2) c. 3+sqrt(3) d. none of these
Find the incentre of the triangle with vertices (1, sqrt3), (0, 0) and (2, 0)
The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/2) (b) (2/3,1/(sqrt(3))) (c) (2/3,(sqrt(3))/2) (d) (1,1/(sqrt(3)))
The centroid of the triangle with vertices (1, sqrt(3)), (0, 0) and (2, 0) is
Prove That : No tangent can be drawn from the point (5/2,1) to the circumcircle of the triangle with vertices (1,sqrt(3)),(1,-sqrt(3)),(3,-sqrt(3)) .
Statement 1: The vertices of a triangle are (1,2), (2,1) and {1/2(3+sqrt(3)),1/3(3+sqrt(3))} Its distance between its orthocentre and circumcentre is zero. Statement 2 : In an equilateral triangle, orthocentre and circumcentre coincide.
Find the incentre of the triangle, whose vertices are A(3,2) B(7,2) and C(7,5).
What is the area of a triangle whose vertices are (0, 6 sqrt(3)), (sqrt(35, 7)) , and (0, 3) ?
If |z_1|=|z_2|=|z_3|=1 and z_1+z_2+z_3=0 then the area of the triangle whose vertices are z_1, z_2, z_3 is 3sqrt(3)//4 b. sqrt(3)//4 c. 1 d. 2
The orthocentre of triangle with vertices (2,(sqrt3-1)/2) , (1/2,-1/2) , (2,,-1/2)
CENGAGE ENGLISH-COORDINATE SYSTEM-Multiple Correct Answers Type