Home
Class 12
MATHS
The incentre of a triangle with vertices...

The incentre of a triangle with vertices `(7, 1),(-1, 5)` and `(3+2sqrt(3),3+4sqrt(3))` is

A

`(3+(2)/(sqrt(3)),3+(4)/(sqrt(3)))`

B

`(1+(2)/(3sqrt(3)),1+(4)/(3sqrt(3)))`

C

`(7,1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the incenter of the triangle with vertices \( A(7, 1) \), \( B(-1, 5) \), and \( C(3 + 2\sqrt{3}, 3 + 4\sqrt{3}) \), we will follow these steps: ### Step 1: Calculate the lengths of the sides of the triangle 1. **Calculate side \( a \)** (opposite vertex \( A \)): \[ a = BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} \] Substituting the coordinates: \[ a = \sqrt{(3 + 2\sqrt{3} - (-1))^2 + (3 + 4\sqrt{3} - 5)^2} \] Simplifying: \[ a = \sqrt{(4 + 2\sqrt{3})^2 + (4\sqrt{3} - 2)^2} \] Expanding the squares: \[ a = \sqrt{(16 + 16\sqrt{3} + 12) + (48 - 16\sqrt{3} + 4)} \] \[ a = \sqrt{80} = 4\sqrt{5} \] 2. **Calculate side \( b \)** (opposite vertex \( B \)): \[ b = AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} \] Substituting the coordinates: \[ b = \sqrt{(3 + 2\sqrt{3} - 7)^2 + (3 + 4\sqrt{3} - 1)^2} \] Simplifying: \[ b = \sqrt{(2\sqrt{3} - 4)^2 + (4\sqrt{3} + 2)^2} \] Expanding the squares: \[ b = \sqrt{(12 - 16\sqrt{3} + 16) + (48 + 16\sqrt{3} + 4)} \] \[ b = \sqrt{80} = 4\sqrt{5} \] 3. **Calculate side \( c \)** (opposite vertex \( C \)): \[ c = AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} \] Substituting the coordinates: \[ c = \sqrt{(-1 - 7)^2 + (5 - 1)^2} \] Simplifying: \[ c = \sqrt{64 + 16} = \sqrt{80} = 4\sqrt{5} \] ### Step 2: Use the incenter formula The coordinates of the incenter \( I \) of a triangle can be calculated using the formula: \[ I_x = \frac{a x_A + b x_B + c x_C}{a + b + c}, \quad I_y = \frac{a y_A + b y_B + c y_C}{a + b + c} \] Substituting the values we found: - \( a = 4\sqrt{5} \) - \( b = 4\sqrt{5} \) - \( c = 4\sqrt{5} \) Calculating \( I_x \): \[ I_x = \frac{4\sqrt{5} \cdot 7 + 4\sqrt{5} \cdot (-1) + 4\sqrt{5} \cdot (3 + 2\sqrt{3})}{4\sqrt{5} + 4\sqrt{5} + 4\sqrt{5}} \] \[ = \frac{4\sqrt{5} (7 - 1 + 3 + 2\sqrt{3})}{12\sqrt{5}} = \frac{4\sqrt{5} (9 + 2\sqrt{3})}{12\sqrt{5}} = \frac{9 + 2\sqrt{3}}{3} \] Calculating \( I_y \): \[ I_y = \frac{4\sqrt{5} \cdot 1 + 4\sqrt{5} \cdot 5 + 4\sqrt{5} \cdot (3 + 4\sqrt{3})}{4\sqrt{5} + 4\sqrt{5} + 4\sqrt{5}} \] \[ = \frac{4\sqrt{5} (1 + 5 + 3 + 4\sqrt{3})}{12\sqrt{5}} = \frac{4\sqrt{5} (9 + 4\sqrt{3})}{12\sqrt{5}} = \frac{9 + 4\sqrt{3}}{3} \] ### Final Result Thus, the coordinates of the incenter \( I \) are: \[ I\left(\frac{9 + 2\sqrt{3}}{3}, \frac{9 + 4\sqrt{3}}{3}\right) \]

To find the incenter of the triangle with vertices \( A(7, 1) \), \( B(-1, 5) \), and \( C(3 + 2\sqrt{3}, 3 + 4\sqrt{3}) \), we will follow these steps: ### Step 1: Calculate the lengths of the sides of the triangle 1. **Calculate side \( a \)** (opposite vertex \( A \)): \[ a = BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise JEE Main|6 Videos

Similar Questions

Explore conceptually related problems

The distance between the orthocentre and circumcentre of the triangle with vertices (1,2),\ (2,1)\ a n d\ ((3+sqrt(3))/2,(3+sqrt(3))/2) is a. 0 b. sqrt(2) c. 3+sqrt(3) d. none of these

Find the incentre of the triangle with vertices (1, sqrt3), (0, 0) and (2, 0)

Knowledge Check

  • What is the area of a triangle whose vertices are (0, 6 sqrt(3)), (sqrt(35, 7)) , and (0, 3) ?

    A
    `15.37`
    B
    `17.75`
    C
    `21.87`
    D
    `25.61`
  • Similar Questions

    Explore conceptually related problems

    The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/2) (b) (2/3,1/(sqrt(3))) (c) (2/3,(sqrt(3))/2) (d) (1,1/(sqrt(3)))

    The centroid of the triangle with vertices (1, sqrt(3)), (0, 0) and (2, 0) is

    Prove That : No tangent can be drawn from the point (5/2,1) to the circumcircle of the triangle with vertices (1,sqrt(3)),(1,-sqrt(3)),(3,-sqrt(3)) .

    Statement 1: The vertices of a triangle are (1,2), (2,1) and {1/2(3+sqrt(3)),1/3(3+sqrt(3))} Its distance between its orthocentre and circumcentre is zero. Statement 2 : In an equilateral triangle, orthocentre and circumcentre coincide.

    Find the incentre of the triangle, whose vertices are A(3,2) B(7,2) and C(7,5).

    If |z_1|=|z_2|=|z_3|=1 and z_1+z_2+z_3=0 then the area of the triangle whose vertices are z_1, z_2, z_3 is 3sqrt(3)//4 b. sqrt(3)//4 c. 1 d. 2

    The orthocentre of triangle with vertices (2,(sqrt3-1)/2) , (1/2,-1/2) , (2,,-1/2)