Home
Class 12
MATHS
Consider two function y=f(x) and y=g(x) ...

Consider two function `y=f(x) and y=g(x)` defined as
`f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):}`
`and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):}`
`underset(xrarr2)(lim)(f(x))/(|g(x)|+1)` exists and f is differentiable at x = 1. The value of limit will be

A

`k in (-1,0)`

B

`k in (oo,0)`

C

`k in (1,5)`

D

`kin (-1,1)`

Text Solution

Verified by Experts

The correct Answer is:
A

Given two functions : `f(X)={{:(ax^(2)+b,,0lexle1),(bx+2b,, 1ltxle3),((a-1)x+2x-3,,3ltxle4):}`
and `g(x)={{:(cx+d,, 0le xle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,xlexle4):}`
Condition for continuity of `f(x):f(1^(-))=f(1)=f(1^(+))and f(3^(-))=f(3)=f(3^(+))`
`rArr" "a+b=3b and 5b=3a+2c-6`
`rArr" "a=2b and c=3-(b)/(2)`
condition for continuity of g(x),
`g(2)=g(2^(-))=g(2^(+))and g(3^(-))=g(3)=g(3^(+))`
`rArr" "2c+d=2a+3-c and 3a+3 -c =10+b`
`rArr" "3c+d-2a=3 and b+c -3a =-7`
Also `f'(x)={{:(2ax,,0ltxlt1),(b,,1ltxlt3),(a-1,,3ltxlt4):}andg'(x)={{:(c,,0ltxlt2),(a,,2ltxlt3),(2x,,3ltxlt4):}`
f is differentiable at x = 1 and g(x) is continues at x = 3.
i.e. a = 2v and 2a = b
Also `3a+3-c=10+b`
`rArr" "a=b=0 and c=-7`
`x^(2)-7alphax+49k (1+alpha)=0` has real and distinct roots for `AA alpha in R.`
`rArr" "49alpha^(2)-4(49k)(1+alpha)gt 0 AA alpha in R`
`rArr" "alpha^(2)-4kalpha-4k gt 0 AA alpha in R`
`rArr" "16k^(2)+16klt0`
`rArr" "k(k+1)lt0`
`" "kin (-1,0)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|9 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

Consider two function y=f(x) and y=g(x) defined as f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):} and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):} lim_(xrarr2) (f(x))/(|g(x)|+1) exists and f is differentiable at x = 1. The value of limit will be

If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

Knowledge Check

  • If f(x)={{:(5x-4",",0ltxle1),(4x^(2)+3ax",",1ltxlt2):}

    A
    1
    B
    0
    C
    `-1`
    D
    `(1)/(3)`
  • Similar Questions

    Explore conceptually related problems

    Let f(x)={{:(3^x","-1lexle1),(4-x","1ltxle4):} then

    Consider two functions, f(x) and g(x) defined as under: f(x)={1+x^3,x < 0 and g(x) ={(x-1)^(1/3) (x+1)^(1/2), x < 0. Evaluate g(f(x)).

    f(x)={(ae^x+be^(-x),-1lexle1),(cx^2,1lexle3),(2ax+c,3lexle4):} ,f'(0)+f'(2)=e then the value of a is:

    If f(x) is defined as f(x)={{:(x,0lexlt(1)/(2)),(0,x=(1)/(2)),(1-x,(1)/(2)ltxle1):} then evaluate : lim_(xrarr(1)/(2)) f(x)

    Show that the function f defined as follows f(x)={(3x-2 ,, 0ltxle1),(2x^2-x ,, 1ltxle2),(5x-4 ,, xgt2):} is continuous at x=2 but not differentiable.

    Find the value of 'a' and 'b' lim_(x to 2) and lim_(x to 4) exists where f(x){{:(x^(2)+ax+b,0lexlt2),(3x+2,2lexle4),(2ax+5b,4ltxle8):}

    Let f(x)={:{(x^(2)+4x",",-3lexle0),(-sinx",",0ltxle(pi)/(2)),(-cosx-1",",(pi)/(2)ltxlepi):} then