Home
Class 12
MATHS
The line A x+B y+C=0 cuts the circle x^2...

The line `A x+B y+C=0` cuts the circle `x^2+y^2+a x+b y+c=0` at `Pa n dQ` . The line `A^(prime)x+B^(prime)x+C^(prime)=0` cuts the circle `x^2+y^2+a^(prime)x+b^(prime)y+c^(prime)=0` at `Ra n dSdot` If `P ,Q ,R ,` and `S` are concyclic, then show that `|a-a ' b-b ' c-c ' A B C A ' B ' C '|=0`

Text Solution

Verified by Experts

P and Q are the points of intersection of the line
`L_(1)-=Ax+By+C=0` (1)
and the circle
`S_(1)-= x^(2)+y^(2)+ax+by+c=0` (2)
R and S are the ponits of intersection of the line
`L_(2)-=A'x+B'y+C'=0` (3)
and the circle
`S_(2) -= x^(2)+y^(2)+a'x+b'y+c'=0` (4)

The radical axis of the circles `S_(1)=` and `S_(2)=` is
`S_(1)- S_(2)=0`
i.e., `L_(3)-= (a-a')x+(b-b')y+(c-c')=0` (5)
If P,Q,R, and S are concyclic and `S_(3)=` is the equation of this circle thorugh P,Q,R, and S, line (1) is the radical axis of the circle `S_(1)=0` and `S_(3)=0` and line (2) is the radical axis of the circles `S_(2)` and `S_(3)=`0.
Thus, the straight line gives by (5),(1), and (3) are the radical axsed of the circles `S_(1)=0,S_(2)=0` and `S_(3)=0` taken in pairs. Since the radical axes of the three circles taken in pairs concurrent or parrallel, we have
`|{:(a-a',b-b',c-c'),(A,B,C),(A',B',C'):}|=0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CIRCLE

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 4.1|1 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 4.2|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Matrix|4 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos

Similar Questions

Explore conceptually related problems

Prove that the line x=a y+b ,\ z=c y+d\ a n d\ x=a^(prime)y+b^(prime),\ z=c^(prime)y+d^(prime) are perpendicular if aa^(prime) + c c^(prime) + 1=0

If the circle x^2+y^2+2gx+2fy+c=0 bisects the circumference of the circle x^2+y^2+2g^(prime)x+2f^(prime)y+c^(prime)=0 then prove that 2g^(prime)(g-g^(prime))+2f^(prime)(f-f^(prime))=c-c '

If the circle x^2+y^2+2gx+2fy+c=0 bisects the circumference of the circle x^2+y^2+2g^(prime)x+2f^(prime)y+c^(prime)=0 then prove that 2g^(prime)(g-g^(prime))+2f^(prime)(f-f^(prime))=c-c '

If the circles x^2+y^2+2a^(prime)x+2b^(prime)y+c^(prime)=0 and 2x^2+2y^2+2a x+2b y+c=0 intersect othrogonally, then prove that a a^(prime) + b b prime=c+c^(prime)/2dot

Fid the condition if lines x=a y+b ,z=c y+da n dx=a^(prime)y+b^(prime), z=c^(prime)y+d ' are perpendicular.

Fid the condition if lines x=a y+b ,z=c y+da n dx=a^(prime)y+b^(prime), z=c^(prime)y+d ' are perpendicular.

Fid the condition if lines x=a y+b ,z=c y+da n dx=a^(prime)y+b^(prime), z=c^(prime)y+d ' are perpendicular.

Show the condition that the curves a x^2+b y^2=1 and a^(prime)\ x^2+b^(prime)\ y^2=1 Should intersect orthogonally

If (a x^2+b x+c)y+(a^(prime)x^2+b^(prime)x^2+c^(prime))=0 and x is a rational function of y , then prove that (a c^(prime)-a^(prime)c)^2=(a b^(prime)-a^(prime)b)xx(b c^(prime)-b^(prime)c)dot

If the quadrilateral formed by the lines a x+b y+c=0,a^(prime)x+b^(prime)y+c=0,a x+b y+c^(prime)=0,a^(prime)x+b^(prime)y+c^(prime)=0 has perpendicular diagonals, then (a) b^2+c^2=b^('2)+c^('2) (b) c^2+a^2=c^('2)+a^('2) (c) a^2+b^2=a^('2)+b^('2) (d) none of these