Home
Class 12
MATHS
In triangle ABC, if cosA+sinA-(2)/(cosB+...

In `triangle ABC`, if `cosA+sinA-(2)/(cosB+sinB)=0` then prove that triangle is isosceles right angled.

Text Solution

AI Generated Solution

To prove that triangle ABC is isosceles right-angled given the equation \( \cos A + \sin A - \frac{2}{\cos B + \sin B} = 0 \), we can follow these steps: ### Step 1: Rewrite the given equation Starting from the given equation: \[ \cos A + \sin A - \frac{2}{\cos B + \sin B} = 0 \] We can rearrange this to: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.2|7 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In a A B C , if cosC=(sinA)/(2sinB) , prove that the triangle is isosceles.

If a cosA=b cos B , then prove that either the triangle is isosceles or right triangle.

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

In a triangle A B C , if cos A=(sinB)/(2sinC) , show that the triangle is isosceles.

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

If A, B, C are the angles of a triangle ABC and if cosA=(sinB)/(2sinC) , show that the triangle is isosceles.

In a triangle ABC if sinA+sinB+sinC = 3^(3/2)/2 prove that the triangle is equilateral.

In a triangleABC , if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A, sinB+sin^2B, sinC+sin^2C]|=0 , then prove that triangleABC is an isosceles triangle.

In a triangleABC , if |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C)|=0 , then prove that triangleABC is an isosceles triangle.

If in a triangle A B C , (2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a) , then prove that the triangle is right angled.