Home
Class 12
MATHS
If A+B=225^(@), then find the value of (...

If `A+B=225^(@)`, then find the value of `(cotA)/(1+cotA)xx(cot B)/(1+cotB)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\cot A}{1 + \cot A} \cdot \frac{\cot B}{1 + \cot B}\) given that \(A + B = 225^\circ\). ### Step-by-Step Solution: 1. **Use the Given Information**: We know that \(A + B = 225^\circ\). 2. **Apply the Tangent Addition Formula**: From the angle sum identity for tangent, we have: \[ \tan(A + B) = \tan(225^\circ) \] We know that \(\tan(225^\circ) = \tan(180^\circ + 45^\circ) = \tan(45^\circ) = 1\). Therefore: \[ \tan(A + B) = 1 \] 3. **Express in Terms of Tangents**: Using the tangent addition formula: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Setting this equal to 1 gives us: \[ \frac{\tan A + \tan B}{1 - \tan A \tan B} = 1 \] 4. **Cross Multiply**: Cross multiplying gives: \[ \tan A + \tan B = 1 - \tan A \tan B \] 5. **Rearrange the Equation**: Rearranging the equation leads to: \[ \tan A + \tan B + \tan A \tan B = 1 \] 6. **Substituting into the Original Expression**: We need to find: \[ \frac{\cot A}{1 + \cot A} \cdot \frac{\cot B}{1 + \cot B} \] We know that \(\cot A = \frac{1}{\tan A}\) and \(\cot B = \frac{1}{\tan B}\). Thus: \[ \frac{\cot A}{1 + \cot A} = \frac{\frac{1}{\tan A}}{1 + \frac{1}{\tan A}} = \frac{1}{\tan A + 1} \] Similarly for \(\cot B\): \[ \frac{\cot B}{1 + \cot B} = \frac{1}{\tan B + 1} \] 7. **Combine the Two Expressions**: Therefore: \[ \frac{\cot A}{1 + \cot A} \cdot \frac{\cot B}{1 + \cot B} = \frac{1}{(\tan A + 1)(\tan B + 1)} \] 8. **Expand the Denominator**: Expanding the denominator: \[ (\tan A + 1)(\tan B + 1) = \tan A \tan B + \tan A + \tan B + 1 \] From our earlier result, we know that \(\tan A + \tan B + \tan A \tan B = 1\). Thus: \[ \tan A \tan B + \tan A + \tan B + 1 = 1 + 1 = 2 \] 9. **Final Result**: Therefore: \[ \frac{\cot A}{1 + \cot A} \cdot \frac{\cot B}{1 + \cot B} = \frac{1}{2} \] ### Conclusion: The value of \(\frac{\cot A}{1 + \cot A} \cdot \frac{\cot B}{1 + \cot B}\) is \(\frac{1}{2}\).

To solve the problem, we need to find the value of \(\frac{\cot A}{1 + \cot A} \cdot \frac{\cot B}{1 + \cot B}\) given that \(A + B = 225^\circ\). ### Step-by-Step Solution: 1. **Use the Given Information**: We know that \(A + B = 225^\circ\). 2. **Apply the Tangent Addition Formula**: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.4|26 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If sec A= 2, then find the value of (1)/(cotA)+(cosA)/(1+sinA)

If 15 cotA = 8 , then find the value of cosec A .

If cosA=7/(25) , find the value of tanA+cotA .

If tanA=1 ,then find the value of sin^(2)A+cos^(2)A+cotA .

If triangleABC , if cot A+cotB+cotC=0 then find the value of cos A cos B cos C .

The value of lim_(xtoa)(cosx-cosa)/(cotx-cota) is

If tanA-tan B=x , and cot B-cotA=y , then find the value of cot(A-B) .

In A B C , if b^2+c^2=2a^2, then value of (cotA)/(cotB+cotC) is 1/2 (b) 3/2 (c) 5/2 (d) 5/2

In A B C , if cotA+cotB+cotC=0 then find the value of cosAcos BcosC

Given that 16cotA=12 ; find the value of (sinA+cosA)/(sinA-cosA) .