Home
Class 12
MATHS
Find the value of cos""(pi)/(12)(sin""...

Find the value of
`cos""(pi)/(12)(sin""(5pi)/(12)+cos""(pi)/(4))+sin""(pi)/(12)(cos""(5pi)/(12)-sin""(pi)/(4))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \cos\left(\frac{\pi}{12}\right) \left(\sin\left(\frac{5\pi}{12}\right) + \cos\left(\frac{\pi}{4}\right)\right) + \sin\left(\frac{\pi}{12}\right) \left(\cos\left(\frac{5\pi}{12}\right) - \sin\left(\frac{\pi}{4}\right)\right), \] we will follow these steps: ### Step 1: Convert radians to degrees First, we convert the angles from radians to degrees for easier calculation: - \(\frac{\pi}{12} = 15^\circ\) - \(\frac{5\pi}{12} = 75^\circ\) - \(\frac{\pi}{4} = 45^\circ\) ### Step 2: Rewrite the expression Now we can rewrite the expression using degrees: \[ \cos(15^\circ) \left(\sin(75^\circ) + \cos(45^\circ)\right) + \sin(15^\circ) \left(\cos(75^\circ) - \sin(45^\circ)\right) \] ### Step 3: Calculate the trigonometric values Now we calculate the trigonometric values: - \(\cos(45^\circ) = \frac{\sqrt{2}}{2}\) - \(\sin(45^\circ) = \frac{\sqrt{2}}{2}\) - \(\sin(75^\circ) = \cos(15^\circ)\) (since \(\sin(75^\circ) = \sin(90^\circ - 15^\circ)\)) - \(\cos(75^\circ) = \sin(15^\circ)\) ### Step 4: Substitute values Substituting these values back into the expression gives us: \[ \cos(15^\circ) \left(\cos(15^\circ) + \frac{\sqrt{2}}{2}\right) + \sin(15^\circ) \left(\sin(15^\circ) - \frac{\sqrt{2}}{2}\right) \] ### Step 5: Expand the expression Now we expand the expression: \[ \cos^2(15^\circ) + \frac{\sqrt{2}}{2} \cos(15^\circ) + \sin^2(15^\circ) - \frac{\sqrt{2}}{2} \sin(15^\circ) \] ### Step 6: Use the Pythagorean identity Using the Pythagorean identity \(\sin^2(x) + \cos^2(x) = 1\): \[ 1 + \frac{\sqrt{2}}{2} \cos(15^\circ) - \frac{\sqrt{2}}{2} \sin(15^\circ) \] ### Step 7: Factor out \(\frac{\sqrt{2}}{2}\) Now we can factor out \(\frac{\sqrt{2}}{2}\): \[ 1 + \frac{\sqrt{2}}{2} \left(\cos(15^\circ) - \sin(15^\circ)\right) \] ### Step 8: Calculate the final value To find the final value, we need to evaluate \(\cos(15^\circ) - \sin(15^\circ)\). Using the values of \(\cos(15^\circ)\) and \(\sin(15^\circ)\), we can compute this value, but for simplicity, we can directly compute the numerical approximation or use a calculator to find \(1 + \frac{\sqrt{2}}{2} \left(\cos(15^\circ) - \sin(15^\circ)\right)\). ### Final Result After evaluating, we find that the final value of the expression is: \[ \frac{3}{2} \]

To solve the expression \[ \cos\left(\frac{\pi}{12}\right) \left(\sin\left(\frac{5\pi}{12}\right) + \cos\left(\frac{\pi}{4}\right)\right) + \sin\left(\frac{\pi}{12}\right) \left(\cos\left(\frac{5\pi}{12}\right) - \sin\left(\frac{\pi}{4}\right)\right), \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.2|7 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)/(11)+cos""(9pi)/(11), is

Evaluate : cos ""(pi)/(8) sin ""(pi)/(8)

sin "" (pi)/(5) sin "" (2pi)/(5) sin ""(4pi)/(5) sin""(3pi)/(5) = (5)/(16).

Find the value of 2cos((5pi)/12) cos(pi/12) and 2sin((5pi)/12)cos(pi/12)

Find the value of: 3sin(pi/6) sec(pi/3) 4sin((5pi)/6) cot(pi/4)

Find the value of : sin{cos("cos"^(-1)(3pi)/4)}

Evaluate : cos ^(2) ""(pi)/(12) - sin ^(2) ""(pi)/(12)

Find the value of (a) sin(pi)/(10)+sin(13pi)/(10) (b) cos^(2)48^(@)=sin^(2) 12^(@)

Prove that: 15sin(5pi)/(12)+15cos(5pi)/(12)-20sin^3(5pi)/(12)-20cos(5pi)/(12)=0

[[cos(pi)/(5)-i sin(pi)/(5)]]^(-5)