Home
Class 12
MATHS
Find the value of (cos^(2)66^(@)-sin^(2)...

Find the value of `(cos^(2)66^(@)-sin^(2)6^(@))(cos^(2)48^(@)-sin^(2)12^(@))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( ( \cos^2 66^\circ - \sin^2 6^\circ )( \cos^2 48^\circ - \sin^2 12^\circ ) \). ### Step-by-Step Solution: 1. **Apply the Trigonometric Identity**: We use the identity \( \cos^2 A - \sin^2 B = \cos(A + B) \cos(A - B) \). - For \( \cos^2 66^\circ - \sin^2 6^\circ \): \[ \cos^2 66^\circ - \sin^2 6^\circ = \cos(66^\circ + 6^\circ) \cos(66^\circ - 6^\circ) = \cos 72^\circ \cos 60^\circ \] 2. **Calculate \( \cos 72^\circ \) and \( \cos 60^\circ \)**: - We know that \( \cos 60^\circ = \frac{1}{2} \). - \( \cos 72^\circ \) can be calculated using the known value or derived from \( \sin 18^\circ \) since \( \cos 72^\circ = \sin 18^\circ \). 3. **Calculate \( \cos^2 48^\circ - \sin^2 12^\circ \)**: - Similarly, apply the identity: \[ \cos^2 48^\circ - \sin^2 12^\circ = \cos(48^\circ + 12^\circ) \cos(48^\circ - 12^\circ) = \cos 60^\circ \cos 36^\circ \] 4. **Calculate \( \cos 36^\circ \)**: - \( \cos 36^\circ \) is known to be \( \frac{\sqrt{5} + 1}{4} \). 5. **Combine the Results**: - Now we have: \[ ( \cos 72^\circ \cos 60^\circ )( \cos 60^\circ \cos 36^\circ ) \] - Substitute the known values: \[ = \left( \sin 18^\circ \cdot \frac{1}{2} \right) \left( \frac{1}{2} \cdot \frac{\sqrt{5} + 1}{4} \right) \] - Simplifying gives: \[ = \frac{1}{4} \cdot \sin 18^\circ \cdot \frac{\sqrt{5} + 1}{4} \] 6. **Final Calculation**: - We know \( \sin 18^\circ = \frac{\sqrt{5} - 1}{4} \). - Therefore: \[ = \frac{1}{4} \cdot \frac{\sqrt{5} - 1}{4} \cdot \frac{\sqrt{5} + 1}{4} \] - This simplifies to: \[ = \frac{1}{64} \cdot (5 - 1) = \frac{4}{64} = \frac{1}{16} \] ### Final Answer: The value of \( ( \cos^2 66^\circ - \sin^2 6^\circ )( \cos^2 48^\circ - \sin^2 12^\circ ) \) is \( \frac{1}{16} \).

To solve the problem, we need to find the value of \( ( \cos^2 66^\circ - \sin^2 6^\circ )( \cos^2 48^\circ - \sin^2 12^\circ ) \). ### Step-by-Step Solution: 1. **Apply the Trigonometric Identity**: We use the identity \( \cos^2 A - \sin^2 B = \cos(A + B) \cos(A - B) \). - For \( \cos^2 66^\circ - \sin^2 6^\circ \): \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.6|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.7|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.4|26 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the value of : cos^(2)60^(@)+sin^(2)30^(@)

Find the value of : cos^(2)60^(@)+sin^(2)30^(@)

Knowledge Check

  • The value of "cos"^(2)48^(@)-"sin"^(2)12^(@) is

    A
    `(sqrt(5)+1)/8`
    B
    `(sqrt(5)-1)/8`
    C
    `(sqrt(5)+1)/4`
    D
    `(sqrt(5)-1)/4`
  • Similar Questions

    Explore conceptually related problems

    The value of cos^(2)48^(@)-sin^(2)12^(@) is

    Find the value of (cos48^@-sin42^@)

    Find the value of cos ^(2) 45 ^(@) - sin ^(2) 15 ^(@).

    Find the value of (a) sin(pi)/(10)+sin(13pi)/(10) (b) cos^(2)48^(@)=sin^(2) 12^(@)

    Find the value of [(sin^2 2 2^(@)+sin^2 6 8^(@))/(cos^2 2 2^(@)+cos^2 6 8^(@))+sin^2 6 3^(@)+cos6 3^(@)sin2 7^(@)]

    Find the value of ((cos1^(@)+sin1^(@))(cos2^(@)+sin2^(@))(cos3^(@)+sin3^(@))...(cos 45^@sin45^@))/( cos1^(@)cos2^(@)cos3^(@)...cos45^(@))

    Find the value of (sin30^(@))/(cos^(2)45^(@))-tan^(2)60^(@)+3cos90^(@)+sin0^(@) .