Home
Class 12
MATHS
<b>Find the summation of the following ...

Find the summation of the following
`(i)` `cos((2pi)/7) + cos((4pi)/7)+ cos((6pi)/7)`
`(ii)` `cos((pi)/7) + cos((2pi)/7)+ cos((3pi)/7)+ cos((4pi)/7)+ cos((5pi)/7)+ cos((6pi)/7)`
`(iii)` `cos (pi/11)+ cos((3pi)/11) + cos((5pi)/11)+ cos((7pi)/11) + cos((9pi)/11)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems, we will use properties of trigonometric functions and identities. Let's break it down step by step. ### (i) Find \( \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) \) 1. **Use the identity for the sum of cosines**: \[ \cos x + \cos(2\pi - x) = 0 \] Here, we can pair \( \cos\left(\frac{2\pi}{7}\right) \) with \( \cos\left(\frac{6\pi}{7}\right) \): \[ \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) = 0 \] 2. **Evaluate the remaining term**: The only term left is \( \cos\left(\frac{4\pi}{7}\right) \). Thus: \[ \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) = 0 + \cos\left(\frac{4\pi}{7}\right) = \cos\left(\frac{4\pi}{7}\right) \] 3. **Final Result**: \[ \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) = \cos\left(\frac{4\pi}{7}\right) \] ### (ii) Find \( \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) \) 1. **Pair the cosines**: Using the identity \( \cos x + \cos(2\pi - x) = 0 \): \[ \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) = 0 \] \[ \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right) = 0 \] \[ \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) = 0 \] 2. **Sum up the pairs**: All pairs sum to zero, hence: \[ \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) = 0 \] ### (iii) Find \( \cos\left(\frac{\pi}{11}\right) + \cos\left(\frac{3\pi}{11}\right) + \cos\left(\frac{5\pi}{11}\right) + \cos\left(\frac{7\pi}{11}\right) + \cos\left(\frac{9\pi}{11}\right) \) 1. **Use the identity for the sum of cosines**: We can apply the same approach as before: \[ \cos\left(\frac{\pi}{11}\right) + \cos\left(\frac{10\pi}{11}\right) = 0 \] \[ \cos\left(\frac{3\pi}{11}\right) + \cos\left(\frac{8\pi}{11}\right) = 0 \] \[ \cos\left(\frac{5\pi}{11}\right) + \cos\left(\frac{6\pi}{11}\right) = 0 \] 2. **Sum up the pairs**: All pairs sum to zero, hence: \[ \cos\left(\frac{\pi}{11}\right) + \cos\left(\frac{3\pi}{11}\right) + \cos\left(\frac{5\pi}{11}\right) + \cos\left(\frac{7\pi}{11}\right) + \cos\left(\frac{9\pi}{11}\right) = 0 \] ### Final Results: 1. \( \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) = \cos\left(\frac{4\pi}{7}\right) \) 2. \( \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) = 0 \) 3. \( \cos\left(\frac{\pi}{11}\right) + \cos\left(\frac{3\pi}{11}\right) + \cos\left(\frac{5\pi}{11}\right) + \cos\left(\frac{7\pi}{11}\right) + \cos\left(\frac{9\pi}{11}\right) = 0 \)

To solve the given problems, we will use properties of trigonometric functions and identities. Let's break it down step by step. ### (i) Find \( \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) \) 1. **Use the identity for the sum of cosines**: \[ \cos x + \cos(2\pi - x) = 0 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.8|9 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.6|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

cos(pi/11) cos((2pi)/11) cos((3pi)/11)....cos((11pi)/11)=

"cos(pi/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)=k

cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=

Prove: cos(pi/15)cos((2pi)/15)cos((3pi)/15)cos((4pi)/15)cos((5pi)/15)cos((6pi)/15)cos((7pi)/15) = 1/2^7

Solve cos^6(pi/16)+cos^6((3pi)/16)+cos^6((5pi)/16)+cos^6((7pi)/16)

3.Prove that (i) "cos((2pi)/7)*cos((4pi)/7)*cos((8pi)/7)=1/8

cos^2(pi/8) +cos^2((3pi)/8) +cos^2((5pi)/8)+cos^2 ((7pi)/8)=2

Show that cos(pi/15)cos((2pi)/15)cos((3pi)/15)cos((4pi)/15)cos((5pi)/15)cos((6pi)/15)cos((7pi)/15) = 1/2^7

Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2