Home
Class 12
MATHS
Solve sin^(2) theta gt cos^(2) theta....

Solve `sin^(2) theta gt cos^(2) theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \sin^2 \theta > \cos^2 \theta \), we can follow these steps: ### Step 1: Rewrite the inequality We start with the given inequality: \[ \sin^2 \theta > \cos^2 \theta \] This can be rewritten as: \[ \sin^2 \theta - \cos^2 \theta > 0 \] ### Step 2: Use the Pythagorean identity We know that \( \sin^2 \theta + \cos^2 \theta = 1 \). Therefore, we can express \( \sin^2 \theta \) in terms of \( \cos^2 \theta \): \[ \sin^2 \theta = 1 - \cos^2 \theta \] Substituting this into our inequality gives: \[ (1 - \cos^2 \theta) - \cos^2 \theta > 0 \] Simplifying this, we have: \[ 1 - 2\cos^2 \theta > 0 \] ### Step 3: Rearranging the inequality Rearranging the inequality, we get: \[ 2\cos^2 \theta < 1 \] Dividing both sides by 2: \[ \cos^2 \theta < \frac{1}{2} \] ### Step 4: Taking the square root Taking the square root of both sides (and remembering to consider both positive and negative roots), we find: \[ |\cos \theta| < \frac{1}{\sqrt{2}} \] This can be expressed as: \[ -\frac{1}{\sqrt{2}} < \cos \theta < \frac{1}{\sqrt{2}} \] ### Step 5: Finding the angles The cosine function is negative in the second quadrant and positive in the first quadrant. The angles corresponding to \( \cos \theta = \frac{1}{\sqrt{2}} \) are: \[ \theta = \frac{\pi}{4} + 2n\pi \quad \text{and} \quad \theta = \frac{7\pi}{4} + 2n\pi \quad \text{for } n \in \mathbb{Z} \] Thus, the inequality \( -\frac{1}{\sqrt{2}} < \cos \theta < \frac{1}{\sqrt{2}} \) corresponds to: \[ \frac{\pi}{4} < \theta < \frac{3\pi}{4} \quad \text{and} \quad \frac{5\pi}{4} < \theta < \frac{7\pi}{4} \] ### Final Solution The general solution for the inequality \( \sin^2 \theta > \cos^2 \theta \) is: \[ \theta \in \left( \frac{\pi}{4} + 2n\pi, \frac{3\pi}{4} + 2n\pi \right) \cup \left( \frac{5\pi}{4} + 2n\pi, \frac{7\pi}{4} + 2n\pi \right) \quad \text{for } n \in \mathbb{Z} \]

To solve the inequality \( \sin^2 \theta > \cos^2 \theta \), we can follow these steps: ### Step 1: Rewrite the inequality We start with the given inequality: \[ \sin^2 \theta > \cos^2 \theta \] This can be rewritten as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|90 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Multiple correct type)|31 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.8|4 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve : 7 sin^(2) theta + 3 cos^(2) theta = 4 .

Solve sin^2 theta tan theta+cos^2 theta cot theta-sin 2 theta=1+tan theta+cot theta

Solve: 2sin^(2)theta+sin^(2)2theta=2

Solve: 2sin^(2)theta+sin^(2)2theta=2

Solve 7 cos^(2) theta+3 sin^(2) theta=4 .

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta

Solve cosec^(2)theta-cot^(2) theta=cos theta .

Solve: sin 2 theta = cos 3 theta.

Solve 2 cos^(2) theta = 3 sin theta