Home
Class 12
MATHS
If 4sin^4x+cos^4x=1,t h e nxi se q u a l...

If `4sin^4x+cos^4x=1,t h e nxi se q u a lto(n in Z)` `npi` (b) `npi+-sin^(-1)sqrt(2/5)` `(2npi)/3` (d) `2npi+-pi/4`

A

`n pi`

B

`npi pm sin^(-1) sqrt(2/5)`

C

`(2 n pi)/3`

D

`2n pi pm pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4\sin^4 x + \cos^4 x = 1 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 4\sin^4 x + \cos^4 x = 1 \] We can express \(\cos^4 x\) in terms of \(\sin^4 x\): \[ \cos^4 x = (1 - \sin^2 x)^2 \] Thus, substituting this into the equation gives: \[ 4\sin^4 x + (1 - \sin^2 x)^2 = 1 \] ### Step 2: Expand the equation Now, we expand \((1 - \sin^2 x)^2\): \[ (1 - \sin^2 x)^2 = 1 - 2\sin^2 x + \sin^4 x \] Substituting this back into the equation: \[ 4\sin^4 x + 1 - 2\sin^2 x + \sin^4 x = 1 \] This simplifies to: \[ 5\sin^4 x - 2\sin^2 x + 1 = 1 \] ### Step 3: Simplify the equation Subtract 1 from both sides: \[ 5\sin^4 x - 2\sin^2 x = 0 \] Factoring out \(\sin^2 x\): \[ \sin^2 x (5\sin^2 x - 2) = 0 \] ### Step 4: Solve for \(\sin^2 x\) Setting each factor to zero gives us: 1. \(\sin^2 x = 0\) 2. \(5\sin^2 x - 2 = 0\) From \(\sin^2 x = 0\): \[ \sin x = 0 \implies x = n\pi, \quad n \in \mathbb{Z} \] From \(5\sin^2 x - 2 = 0\): \[ \sin^2 x = \frac{2}{5} \implies \sin x = \pm \sqrt{\frac{2}{5}} \] Thus, the solutions for \(x\) are: \[ x = \sin^{-1}\left(\sqrt{\frac{2}{5}}\right) + 2n\pi \quad \text{and} \quad x = \pi - \sin^{-1}\left(\sqrt{\frac{2}{5}}\right) + 2n\pi \] ### Step 5: Combine the solutions The general solutions can be expressed as: \[ x = n\pi \quad \text{or} \quad x = n\pi \pm \sin^{-1}\left(\sqrt{\frac{2}{5}}\right) \] ### Conclusion Thus, the values of \(x\) that satisfy the equation are: - \(x = n\pi\) (Option A) - \(x = n\pi \pm \sin^{-1}\left(\sqrt{\frac{2}{5}}\right)\) (Option B)

To solve the equation \( 4\sin^4 x + \cos^4 x = 1 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 4\sin^4 x + \cos^4 x = 1 \] We can express \(\cos^4 x\) in terms of \(\sin^4 x\): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Numerical value type)|21 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|90 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

If 4sin^4x+cos^4x=1 ,then x is equal to (n in Z) (a) npi (b) npi+-sin^(-1)sqrt(2/5) (c) (2npi)/3 (d) 2npi+-pi/4

If sin^3theta+sinthetacos^2theta=1,t h e ntheta is equal to (n in Z) (a) 2npi (b) 2npi+pi/2 (c) 2npi-pi/2 (d) npi

If sin^4 x+cos^4x=sinx.cosx, then x is equal to (A) npi, nepsilon I (B) (6n=1) pi/6, n epsilon I (C) (4n+1) pi/4, n epsilon I (D) none of these

The solution of 4sin^2x+tan^2x+cos e c^2x+cot^2x-6=0i s(n in Z) (a) npi+-pi/4 (b) 2npi+-pi/4 npi+pi/3 (d) npi-pi/6

The general values of theta satisfying the equation 2sin^2theta-3sintheta-2=0 is (n in Z)dot npi+(-1)^npi/6 (b) npi+(-1)^npi/2 npi+(-1)^n(5pi)/6 (d) npi+(-1)^n(7pi)/6

If sintheta=1/2a n dcostheta=-(sqrt(3))/2, then the general value of theta is (n in Z)dot (a) 2npi+(5pi)/6 (b) 2npi+pi/6 (c)2npi+(7pi)/6 (d) 2npi+pi/4

One of the general solutions of 4sin^4x+cos^4x=1 is npi+-alpha/2,alpha=cos^(-1)(1/5),AAn in Z npi+-alpha/2,alpha=cos^(-1)(3/5),AAn in Z npi+-alpha/2,alpha=cos^(-1)(1/3),AAn in Z none of these

The general solution of the equation sinx-3sin2x+sin3x=cosx-3cos2x+cos3x is (n in Z) npi+pi/8 (b) (npi)/2+pi/8 (-1)^n(npi)/2+pi/8 (d) 2npi+cos^(-1)2/3

The general value of theta satisfying cot theta=-sqrt(3) and cos theta = sqrt(3)/2 is (A) npi+pi/3 (B) npi- pi/3 (C) 2npi+pi/6 (D) 2npi- pi/6

If 3tan(theta-15^0)=tan(theta+15^0), then theta is equal to n in Z) n pi+pi/4 (b) npi+pi/8 npi+pi/3 (d) none of these