Home
Class 12
MATHS
If 0 le x le 2pi, then the number of rea...

If `0 le x le 2pi`, then the number of real values of x, which satisfy the equation `cos x + cos 2x + cos 3x + cos 4x=0`, is

A

5

B

7

C

9

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos x + \cos 2x + \cos 3x + \cos 4x = 0 \) for \( 0 \leq x \leq 2\pi \), we can follow these steps: ### Step 1: Group the cosines We can group the terms in pairs: \[ \cos x + \cos 4x + \cos 2x + \cos 3x = 0 \] ### Step 2: Use the cosine addition formula We can apply the cosine addition formula: \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] Applying this to \( \cos x + \cos 4x \): \[ \cos x + \cos 4x = 2 \cos\left(\frac{5x}{2}\right) \cos\left(\frac{3x}{2}\right) \] And for \( \cos 2x + \cos 3x \): \[ \cos 2x + \cos 3x = 2 \cos\left(\frac{5x}{2}\right) \cos\left(\frac{x}{2}\right) \] ### Step 3: Combine the results Now we can combine these results: \[ 2 \cos\left(\frac{5x}{2}\right) \cos\left(\frac{3x}{2}\right) + 2 \cos\left(\frac{5x}{2}\right) \cos\left(\frac{x}{2}\right) = 0 \] Factoring out \( 2 \cos\left(\frac{5x}{2}\right) \): \[ 2 \cos\left(\frac{5x}{2}\right) \left( \cos\left(\frac{3x}{2}\right) + \cos\left(\frac{x}{2}\right) \right) = 0 \] ### Step 4: Set each factor to zero This gives us two equations to solve: 1. \( \cos\left(\frac{5x}{2}\right) = 0 \) 2. \( \cos\left(\frac{3x}{2}\right) + \cos\left(\frac{x}{2}\right) = 0 \) ### Step 5: Solve \( \cos\left(\frac{5x}{2}\right) = 0 \) The cosine function is zero at: \[ \frac{5x}{2} = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] This gives: \[ x = \frac{\pi}{5} + \frac{2n\pi}{5} \] For \( n = 0, 1, 2, 3, 4, 5 \), we find: - \( n = 0 \): \( x = \frac{\pi}{5} \) - \( n = 1 \): \( x = \frac{3\pi}{5} \) - \( n = 2 \): \( x = \pi \) - \( n = 3 \): \( x = \frac{7\pi}{5} \) - \( n = 4 \): \( x = \frac{9\pi}{5} \) ### Step 6: Solve \( \cos\left(\frac{3x}{2}\right) + \cos\left(\frac{x}{2}\right) = 0 \) Using the cosine addition formula again: \[ \cos\left(\frac{3x}{2}\right) = -\cos\left(\frac{x}{2}\right) \] This leads to: \[ \cos\left(\frac{3x}{2}\right) = \cos\left(\pi - \frac{x}{2}\right) \] Thus, we have: \[ \frac{3x}{2} = \pi - \frac{x}{2} + 2k\pi \quad (k \in \mathbb{Z}) \] This simplifies to: \[ 2x = \pi + 2k\pi \quad \Rightarrow \quad x = \frac{\pi}{2} + k\pi \] For \( k = 0, 1 \): - \( k = 0 \): \( x = \frac{\pi}{2} \) - \( k = 1 \): \( x = \frac{3\pi}{2} \) ### Step 7: Compile all solutions The solutions we have found are: - From \( \cos\left(\frac{5x}{2}\right) = 0 \): \( \frac{\pi}{5}, \frac{3\pi}{5}, \pi, \frac{7\pi}{5}, \frac{9\pi}{5} \) - From \( \cos\left(\frac{3x}{2}\right) + \cos\left(\frac{x}{2}\right) = 0 \): \( \frac{\pi}{2}, \frac{3\pi}{2} \) ### Step 8: Count the unique solutions The unique solutions in the interval \( [0, 2\pi] \) are: - \( \frac{\pi}{5}, \frac{3\pi}{5}, \frac{\pi}{2}, \pi, \frac{7\pi}{5}, \frac{9\pi}{5}, \frac{3\pi}{2} \) Thus, the total number of real values of \( x \) that satisfy the equation is **7**.

To solve the equation \( \cos x + \cos 2x + \cos 3x + \cos 4x = 0 \) for \( 0 \leq x \leq 2\pi \), we can follow these steps: ### Step 1: Group the cosines We can group the terms in pairs: \[ \cos x + \cos 4x + \cos 2x + \cos 3x = 0 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives ((JEE ADVANSED) Single correct answer type)|3 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Multiple correct answer type)|2 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Numerical value type)|21 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

The number of values of x in [0,2pi] satisfying the equation |cos x – sin x| >= sqrt2 is

Find the number of value of x in [0,5pi] satisying the equation 3 cos^2 x -10 cos x +7=0

Number of values of x satisfying the equation cos ( 3 arc cos ( x-1)) = 0 is equal to

If 0 le x le (pi)/(2) , then the number of value of x for which sin x - sin 2x + sin 3x = 0 , is

The number of values of x which satify the equation cos^(2)x =1 and x^(2) le 20 are _________

The number of values of x in [0, 4 pi] satisfying the inequation |sqrt(3)"cos" x - "sin"x|ge2 , is

Find the set of values of x , which satisfy sin x * cos^(3) x gt cos x* sin^(3) x , 0 le x le 2pi .

Find the set of values of x , which satisfy sin x * cos^(3) x gt cos * sin^(3) x , 0 le x le 2pi .

Solve the equation for 0 le x le 2pi. sin x cos x =0

Find the values of x in (-pi,pi) which satisfy the equation 8^(1+|cosx|+|cos^2x|+|cos^3x|+...))=4^3