Home
Class 12
MATHS
find the value of the...

find the value of the

A

`pm sqrt(n pi), n in {0, 1, 2, ...}`

B

`pm sqrt(n pi), n in {1, 2, ...}`

C

`pi/2+2npi, n in {..., -2, -1, 0, 1, 2 ...}`

D

`2npi, n in {..., -2, -1, 0, 1, 2, ...}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the values of certain trigonometric expressions based on the provided sets. Let's break down the solution step by step. ### Step 1: Define the Sets We will define the sets based on the problem statement: 1. **Set A**: \( A = \{ \pm \sqrt{n \pi} \mid n \in \mathbb{W} \} \) where \( \mathbb{W} \) is the set of whole numbers (0, 1, 2, 3,...). 2. **Set B**: \( B = \{ \pm \sqrt{n \pi} \mid n \in \mathbb{N} \} \) where \( \mathbb{N} \) is the set of natural numbers (1, 2, 3,...). 3. **Set C**: \( C = \{ \frac{\pi}{2} + 2n\pi \mid n \in \mathbb{Z} \} \) where \( \mathbb{Z} \) is the set of integers (..., -2, -1, 0, 1, 2,...). 4. **Set D**: \( D = \{ 2n\pi \mid n \in \mathbb{Z} \} \). ### Step 2: Calculate Elements of Set A For Set A, we will calculate the elements for \( n = 0, 1, 2, 3, 4 \): - For \( n = 0 \): \( \pm \sqrt{0 \cdot \pi} = 0 \) - For \( n = 1 \): \( \pm \sqrt{1 \cdot \pi} = \pm \sqrt{\pi} \) - For \( n = 2 \): \( \pm \sqrt{2 \cdot \pi} = \pm \sqrt{2\pi} \) - For \( n = 3 \): \( \pm \sqrt{3 \cdot \pi} = \pm \sqrt{3\pi} \) - For \( n = 4 \): \( \pm \sqrt{4 \cdot \pi} = \pm 2\sqrt{\pi} \) Thus, Set A is: \[ A = \{ 0, \pm \sqrt{\pi}, \pm \sqrt{2\pi}, \pm \sqrt{3\pi}, \pm 2\sqrt{\pi} \} \] ### Step 3: Calculate Elements of Set B For Set B, we will calculate the elements for \( n = 1, 2, 3, 4 \): - For \( n = 1 \): \( \pm \sqrt{1 \cdot \pi} = \pm \sqrt{\pi} \) - For \( n = 2 \): \( \pm \sqrt{2 \cdot \pi} = \pm \sqrt{2\pi} \) - For \( n = 3 \): \( \pm \sqrt{3 \cdot \pi} = \pm \sqrt{3\pi} \) - For \( n = 4 \): \( \pm \sqrt{4 \cdot \pi} = \pm 2\sqrt{\pi} \) Thus, Set B is: \[ B = \{ \pm \sqrt{\pi}, \pm \sqrt{2\pi}, \pm \sqrt{3\pi}, \pm 2\sqrt{\pi} \} \] ### Step 4: Calculate Elements of Set C For Set C, we will calculate the elements for \( n = -2, -1, 0, 1, 2 \): - For \( n = 0 \): \( \frac{\pi}{2} + 2 \cdot 0 \cdot \pi = \frac{\pi}{2} \) - For \( n = 1 \): \( \frac{\pi}{2} + 2 \cdot 1 \cdot \pi = \frac{\pi}{2} + 2\pi = \frac{5\pi}{2} \) - For \( n = -1 \): \( \frac{\pi}{2} + 2 \cdot (-1) \cdot \pi = \frac{\pi}{2} - 2\pi = -\frac{3\pi}{2} \) - For \( n = 2 \): \( \frac{\pi}{2} + 2 \cdot 2 \cdot \pi = \frac{\pi}{2} + 4\pi = \frac{9\pi}{2} \) - For \( n = -2 \): \( \frac{\pi}{2} + 2 \cdot (-2) \cdot \pi = \frac{\pi}{2} - 4\pi = -\frac{7\pi}{2} \) Thus, Set C is: \[ C = \{ \frac{\pi}{2}, \frac{5\pi}{2}, -\frac{3\pi}{2}, \frac{9\pi}{2}, -\frac{7\pi}{2} \} \] ### Step 5: Calculate Elements of Set D For Set D, we will calculate the elements for \( n = -2, -1, 0, 1, 2 \): - For \( n = 0 \): \( 2 \cdot 0 \cdot \pi = 0 \) - For \( n = 1 \): \( 2 \cdot 1 \cdot \pi = 2\pi \) - For \( n = -1 \): \( 2 \cdot (-1) \cdot \pi = -2\pi \) - For \( n = 2 \): \( 2 \cdot 2 \cdot \pi = 4\pi \) - For \( n = -2 \): \( 2 \cdot (-2) \cdot \pi = -4\pi \) Thus, Set D is: \[ D = \{ 0, 2\pi, -2\pi, 4\pi, -4\pi \} \] ### Final Result The values of the sets are: - Set A: \( A = \{ 0, \pm \sqrt{\pi}, \pm \sqrt{2\pi}, \pm \sqrt{3\pi}, \pm 2\sqrt{\pi} \} \) - Set B: \( B = \{ \pm \sqrt{\pi}, \pm \sqrt{2\pi}, \pm \sqrt{3\pi}, \pm 2\sqrt{\pi} \} \) - Set C: \( C = \{ \frac{\pi}{2}, \frac{5\pi}{2}, -\frac{3\pi}{2}, \frac{9\pi}{2}, -\frac{7\pi}{2} \} \) - Set D: \( D = \{ 0, 2\pi, -2\pi, 4\pi, -4\pi \} \)

To solve the given problem, we need to find the values of certain trigonometric expressions based on the provided sets. Let's break down the solution step by step. ### Step 1: Define the Sets We will define the sets based on the problem statement: 1. **Set A**: \( A = \{ \pm \sqrt{n \pi} \mid n \in \mathbb{W} \} \) where \( \mathbb{W} \) is the set of whole numbers (0, 1, 2, 3,...). 2. **Set B**: \( B = \{ \pm \sqrt{n \pi} \mid n \in \mathbb{N} \} \) where \( \mathbb{N} \) is the set of natural numbers (1, 2, 3,...). 3. **Set C**: \( C = \{ \frac{\pi}{2} + 2n\pi \mid n \in \mathbb{Z} \} \) where \( \mathbb{Z} \) is the set of integers (..., -2, -1, 0, 1, 2,...). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Multiple correct answer type)|2 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Linked comprehension type)|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives ((JEE MAIN) Single correct Answer type)|2 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Find the values of the following trigonometric ratios :

Find the values of the following :- sin390^(@)""

Find the value of y

Find the value of p

Find the value of x

Find the value of x

Find the value of x

Find the value of x

In Figure, find the value of x

If 24 a is divisible by 9, find the value of a .