Home
Class 12
MATHS
The expression (tan(x-(pi)/(2)).cos((3...

The expression
`(tan(x-(pi)/(2)).cos((3pi)/(2)+x)-sin^(3)((7pi)/(2)-x))/(cos(x-(pi)/(2)).tan((3pi)/(2)+x))`simplifies to

A

`(1+cos^(2)x)`

B

`sin^(2)x`

C

`-(1+cos^(2)x)`

D

`cos^(2)x`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{\tan\left(x - \frac{\pi}{2}\right) \cos\left(\frac{3\pi}{2} + x\right) - \sin^3\left(\frac{7\pi}{2} - x\right)}{\cos\left(x - \frac{\pi}{2}\right) \tan\left(\frac{3\pi}{2} + x\right)}, \] we will follow these steps: ### Step 1: Simplify \(\tan\left(x - \frac{\pi}{2}\right)\) Using the identity \(\tan\left(\theta - \frac{\pi}{2}\right) = -\cot(\theta)\), we have: \[ \tan\left(x - \frac{\pi}{2}\right) = -\cot(x). \] ### Step 2: Simplify \(\cos\left(\frac{3\pi}{2} + x\right)\) Using the identity \(\cos\left(\frac{3\pi}{2} + x\right) = -\sin(x)\), we get: \[ \cos\left(\frac{3\pi}{2} + x\right) = -\sin(x). \] ### Step 3: Substitute into the expression Now substituting these results into the expression, we have: \[ \frac{-\cot(x)(-\sin(x)) - \sin^3\left(\frac{7\pi}{2} - x\right)}{\cos\left(x - \frac{\pi}{2}\right) \tan\left(\frac{3\pi}{2} + x\right)}. \] ### Step 4: Simplify \(\sin^3\left(\frac{7\pi}{2} - x\right)\) Using the identity \(\sin\left(\frac{7\pi}{2} - x\right) = \sin\left(3\pi - x\right) = -\sin(x)\), we find: \[ \sin^3\left(\frac{7\pi}{2} - x\right) = (-\sin(x))^3 = -\sin^3(x). \] ### Step 5: Substitute \(\cos\left(x - \frac{\pi}{2}\right)\) Using the identity \(\cos\left(x - \frac{\pi}{2}\right) = \sin(x)\), we have: \[ \cos\left(x - \frac{\pi}{2}\right) = \sin(x). \] ### Step 6: Simplify \(\tan\left(\frac{3\pi}{2} + x\right)\) Using the identity \(\tan\left(\frac{3\pi}{2} + x\right) = -\cot(x)\), we find: \[ \tan\left(\frac{3\pi}{2} + x\right) = -\cot(x). \] ### Step 7: Substitute into the expression Now substituting these results back into the expression gives: \[ \frac{\cot(x)\sin(x) + \sin^3(x)}{\sin(x)(-\cot(x))}. \] ### Step 8: Simplify the numerator The numerator simplifies to: \[ \cot(x)\sin(x) + \sin^3(x) = \sin(x)(\cot(x) + \sin^2(x)). \] ### Step 9: Substitute and simplify the entire expression Now substituting this into the expression gives: \[ \frac{\sin(x)(\cot(x) + \sin^2(x))}{\sin(x)(-\cot(x))}. \] ### Step 10: Cancel \(\sin(x)\) Assuming \(\sin(x) \neq 0\), we can cancel \(\sin(x)\): \[ \frac{\cot(x) + \sin^2(x)}{-\cot(x)} = -1 - \frac{\sin^2(x)}{\cot(x)}. \] ### Step 11: Final simplification Using \(\cot(x) = \frac{\cos(x)}{\sin(x)}\), we can rewrite the expression: \[ -1 - \frac{\sin^2(x) \cdot \sin(x)}{\cos(x)} = -1 - \frac{\sin^3(x)}{\cos(x)}. \] Thus, the expression simplifies to: \[ \sin^2(x). \] ### Final Result The simplified expression is: \[ \sin^2(x). \]

To simplify the expression \[ \frac{\tan\left(x - \frac{\pi}{2}\right) \cos\left(\frac{3\pi}{2} + x\right) - \sin^3\left(\frac{7\pi}{2} - x\right)}{\cos\left(x - \frac{\pi}{2}\right) \tan\left(\frac{3\pi}{2} + x\right)}, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Advanced Multiple correct answers type|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

"sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)(pi)/(4)=-(1)/(2)"

Prove that : cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2)

(lim)_(x->pi/2)(tan2x)/(x-pi/2)

(lim)_(x->pi/2)(tan2x)/(x-pi/2)

lim_(x to pi/2) (tan2x)/(x-(pi)/(2))

The period of sin(pi/4)x+cos(pi/2)x+cos(pi/3)x is

cos^2(pi/8) +cos^2((3pi)/8) +cos^2((5pi)/8)+cos^2 ((7pi)/8)=2

2sin^(2)""(pi)/(6)+cosec^(2)""(7pi)/(6) cos^(2)""(pi)/(3)=(3)/(2)

sin^(2) (pi/6)+cos^(2) (pi/3)-tan^(2) (pi/4)=-1/2

(cos(pi-x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x