Home
Class 12
MATHS
The vectors veca and vecb are non colli...

The vectors `veca and vecb ` are non collinear. Find for what value of x the vectors `vecc=(x-2)veca+vecb and vecd=(2x+1) veca-vecb` are collinear.?

Text Solution

AI Generated Solution

To determine the value of \( x \) for which the vectors \( \vec{c} = (x-2)\vec{a} + \vec{b} \) and \( \vec{d} = (2x+1)\vec{a} - \vec{b} \) are collinear, we can use the property that two vectors are collinear if the ratios of their corresponding components are equal. ### Step-by-Step Solution: 1. **Set Up the Ratios**: For the vectors \( \vec{c} \) and \( \vec{d} \) to be collinear, we can express this condition as: \[ \frac{x-2}{2x+1} = \frac{1}{-1} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 41|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 42|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 39|1 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If vecaandvecb are non-collinear vector, find the value of x such that the vectors vecalpha=(x-2)veca+vecbandvecbeta=(3+2x)veca-2vecb are collinear.

If veca and vecb are two non collinear vectors and vecu = veca-(veca.vecb).vecb and vecv=veca x vecb then vecv is

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

If veca and vecb are two non collinear unit vectors and |veca+vecb|=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(veca.vecb)vecb and vecv=vecaxxvecb , then |vecv| is

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

The vectors veca and vecb are not perpendicular and vecc and vecd are two vectors satisfying : vecbxxvecc=vecbxxvecd and veca.vecd=0. Then the vecd is equal to (A) vecc+(veca.vecc)/(veca.vecb)vecb (B) vecb+(vecb.vecc)/(veca.vecb)vecc (C) vecc-(veca.vecc)/(veca.vecb)vecb (D) vecb-(vecb.vecc)/(veca.vecb)vecc

veca and vecc are unit collinear vectors and |vecb|=6 , then vecb-3vecc = lambda veca , if lambda is:

The vectors veca and vecb are not perpendicular and vecac and vecd are two vectors satisfying : vecbxxvecc=vecbxxvecd and veca.vecd=0. Then the vecd is equal to (A) vecc+(veca.vecc)/(veca.vecb))vecb (B) vecb+(vecb.vecc)/(veca.vecb))vecc (C) vecc-(veca.vecc)/(veca.vecb))vecb (D) vecb-(vecb.vecc)/(veca.vecb))vecc

Given three vectors e veca, vecb and vecc two of which are non-collinear. Futrther if (veca + vecb) is collinear with vecc, (vecb +vecc) is collinear with veca, |veca|=|vecb|=|vecc|=sqrt2 find the value of veca. Vecb + vecb.vecc+vecc.veca