Home
Class 12
MATHS
If vec aa n d vec b are two non-colline...

If ` vec aa n d vec b` are two non-collinear vectors, show that points `l_1 vec a+m_1 vec b ,l_2 vec a+m_2 vec b` and `l_3 vec a+m_3 vec b` are collinear if `|l_1 l_2 l_3 m_1m_2m_3 1 1 1|=0.`

Text Solution

Verified by Experts

We know that three points having P.V.s `veca, vecb and vecc` are collinear if there exists a relation of the form
`xveca+yvecb+zvecc, =vec0`, where `x+y+z=0`.
Now `xveca+yvecb+zvecc=vec0` gives
`" "x(l_(1)veca+m_(1)vecb)+y(l_(2)veca+m_(2)vecb)+z(l_(3)veca+m_(3)vecb)=vec0`
or `" "(xl_(1)+yl_(2)+zl_(3))veca+(xm_(1)+ym_(2)+zm_(3))vecb=vec0`
Since `veca and vecb` are two non-collinear vectors, it follows that
`" "xl_(1)+yl_(2)+zl_(3)=0" "` (i)
`" "xm_(1)+ym_(2)+zm_(3)=0" "`(ii)
Because otherwise one is expressible as a scalar multiple of the other which would mean that `veca and vecb` are collinear. Also
`" "x+y+z=0" "`(iii)
Eliminating `x, y and z` from (i), (ii) and (iii), we get
`" "|{:(l_(1),,l_(2),,l_(3)),(m_(1),,m_(2),,m_(3)),(1,,1,,1):}|=0`
Alternate method :
`" "A(l_(1)veca+m_(1)vecb), B(l_(2)veca+m_(2)vecb) and C(l_(3)veca+m_(3)vecb)` are collinear.
`rArr" "` Vectors = `(l_(2)-l_(3))veca+(m_(2)-m_(3))vecb and vec(AB) =(l_(1) -l_(2))veca+(m_(1)-m_(2))vecb` are collinear.
`rArr" "(l_(1)-l_(2))/(l_(2)-l_(3))=(m_(1)-m_(2))/(m_(2)-m_(3))`
`rArr" "|{:(l_(1),,l_(2),,l_(3)),(m_(1),,m_(2),,m_(3)),(1,,1,,1):}|=0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 40|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 41|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 38|1 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If vec a and vec b are two non-collinear vectors, show that points l_1 vec a+m_1 vec b ,l_2 vec a+m_2 vec b and l_3 vec a+m_3 vec b are collinear if |(l_1,l_2,l_3),(m_1,m_2,m_3),( 1, 1, 1)|=0.

If vec a and vec b are two non-collinear unit vectors such that | vec a+ vec b|=sqrt(3), find (2 vec a-5 vec b). (3 vec a+ vec b) .

If vec a\ a n d\ vec b are two non collinear unit vectors such that | vec a+ vec b|=sqrt(3),\ find \ (2 vec a-5 vec b). (3 vec a+ vec b)

If vec a , vec b are two non-collinear vectors, prove that the points with position vectors vec a+ vec b , vec a- vec b and vec a+lambda vec b are collinear for all real values of lambdadot

If vec a , vec b are two non-collinear vectors, prove that the points with position vectors vec a+ vec b , vec a- vec b and vec a+lambda vec b are collinear for all real values of lambdadot

If vec a and vec b are two non-collinear vectors having the same initial point. What are the vectors represented by vec a+ vec b and vec a- vec b .

If vec a and vec b are two non-collinear vectors having the same initial point. What are the vectors represented by vec a+ vec b and vec a- vec b .

Statement -1 : If veca and vecb are non- collinear vectors, then points having position vectors x_(1) vec(a) + y_(1) vec(b) , x_(2)vec(a)+ y_(2) vec(b) and x_(3) veca + y_(3) vecb are collinear if |(x_(1),x_(2),x_(3)),(y_(1),y_(2),y_(3)),(1,1,1)|=0 Statement -2: Three points with position vectors veca, vecb , vec c are collinear iff there exist scalars x, y, z not all zero such that x vec a + y vec b + z vec c = vec 0, " where " x+y+z=0.

If vec a and vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a and vec b .

Vectors vec aa n d vec b are non-collinear. Find for what value of x vectors vec c=(x-2) vec a+ vec b and vec d=(2x+1) vec a- vec b are collinear?