Home
Class 12
MATHS
If veca, vecb, vecc are non coplanar vec...

If `veca, vecb, vecc` are non coplanar vectors and `lamda` is a real number, then the vectors `veca+2vecb+3vecc, lamdavecb+4vec` and `(2lamda-1)vecc` are non coplanar for

A

`mu in R`

B

`lamda = (1)/(2)`

C

`lamda =0`

D

no value of `lamda`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \(\lambda\) for which the vectors \(\vec{a} + 2\vec{b} + 3\vec{c}\), \(\lambda \vec{b} + 4\vec{c}\), and \((2\lambda - 1)\vec{c}\) are non-coplanar, we can set up a determinant based on the coefficients of these vectors. ### Step-by-step Solution: 1. **Identify the Vectors and Their Coefficients:** - The first vector is \(\vec{a} + 2\vec{b} + 3\vec{c}\) with coefficients: - Coefficient of \(\vec{a}\) = 1 - Coefficient of \(\vec{b}\) = 2 - Coefficient of \(\vec{c}\) = 3 - The second vector is \(\lambda \vec{b} + 4\vec{c}\) with coefficients: - Coefficient of \(\vec{a}\) = 0 - Coefficient of \(\vec{b}\) = \(\lambda\) - Coefficient of \(\vec{c}\) = 4 - The third vector is \((2\lambda - 1)\vec{c}\) with coefficients: - Coefficient of \(\vec{a}\) = 0 - Coefficient of \(\vec{b}\) = 0 - Coefficient of \(\vec{c}\) = \(2\lambda - 1\) 2. **Set Up the Determinant:** To check for non-coplanarity, we need to compute the determinant of the matrix formed by these coefficients: \[ \begin{vmatrix} 1 & 2 & 3 \\ 0 & \lambda & 4 \\ 0 & 0 & 2\lambda - 1 \end{vmatrix} \] 3. **Calculate the Determinant:** The determinant can be calculated as follows: \[ \text{Determinant} = 1 \cdot (\lambda \cdot (2\lambda - 1) - 0) - 2 \cdot (0) + 3 \cdot (0) \] This simplifies to: \[ \lambda(2\lambda - 1) \] 4. **Set the Determinant to Zero:** For the vectors to be non-coplanar, the determinant must not equal zero: \[ \lambda(2\lambda - 1) = 0 \] 5. **Solve for \(\lambda\):** Setting the equation to zero gives us: - \(\lambda = 0\) - \(2\lambda - 1 = 0 \Rightarrow \lambda = \frac{1}{2}\) 6. **Conclusion:** The vectors are non-coplanar for \(\lambda = 0\) or \(\lambda = \frac{1}{2}\). The value of \(\mu\) does not affect the coplanarity condition since it does not appear in the determinant. ### Final Answer: The vectors are non-coplanar for \(\lambda = 0\) or \(\lambda = \frac{1}{2}\) and \(\mu\) can take any real value.

To determine the values of \(\lambda\) for which the vectors \(\vec{a} + 2\vec{b} + 3\vec{c}\), \(\lambda \vec{b} + 4\vec{c}\), and \((2\lambda - 1)\vec{c}\) are non-coplanar, we can set up a determinant based on the coefficients of these vectors. ### Step-by-step Solution: 1. **Identify the Vectors and Their Coefficients:** - The first vector is \(\vec{a} + 2\vec{b} + 3\vec{c}\) with coefficients: - Coefficient of \(\vec{a}\) = 1 - Coefficient of \(\vec{b}\) = 2 ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then the vectors veca+2vecb+3vecc, lamdavecb+4vecc and (2lamda-1)vecc are non coplanar for

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then [(lamda(veca+vecb), lamda^(2)vecb, lamdavecc)]=[(veca, vecb+vecc,vecb)] for

If veca , vecb , vecc are non-coplanar vectors and lambda is a real number then [ lambda(veca+vecb) lambda^2vecb lambdavecc ] = [ veca vecb+vecc vecb ] for:

If veca, vecb, vecc are non coplanar non null vectors such that [(veca, vecb, vecc)]=2 then {[(vecaxxvecb, vecbxxvecc, veccxxveca)]}^(2)=

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

i. If vec a , vec b a n d vec c are non-coplanar vectors, prove that vectors 3veca -7vecb -4 vecc ,3 veca -2vecb + vecc and veca + vecb +2 vecc are coplanar.

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to