Home
Class 12
MATHS
If a,b, and c are all different and if ...

If a,b, and c are all different and if
`|{:(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3)):}|`=0 Prove that abc =-1.

Text Solution

Verified by Experts

The correct Answer is:
`-1`

Given that `|{:(a,, a^(2),, 1+a^(3)), (b,,b^(2),,1+b^(3)),(c,,c^(2),,1+c^(3)):}|=0`
`|{:(a,,a^(2),,1),(b,,b^(2),,1),(c,, c^(2),,1):}|+ abc|{:(1,,a,,a^(2)),(1,,b,,b^(2)),(1,,c,,c^(2)):}|=0`
Operating `C_2 harr C_3 and ` then `C_1 harr C_2` in first determinant
`|{:(1,,a,,a^(2)),(1,,b,,b^(2)),(1,,c,,c^(2)):}|+abc |{:(1,,a,,a^(2)),(1,,b,,b^(2)),(1,,c,,c^(2)):}| =0`
either 1 + abc =0 or `|{:(1,,a ,,a^(2)),(1,,b,,b^(2)),(1,,c,,c^(2)):}|=0`
Also given that vectors `vecA, vecB and vecC` are non-coplanar.
`|{:(1,,a,,a^(2)),(1,,b,,b^(2)),(1,,c,,c^(2)):}| ne 0`
So we must have `1+ abc =0 or abc =-1`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise TRUE OR FALSE|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ARCHIVES SUBJECTIVE TYPE|9 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, vecc=hati+chatj+c^(2)hatk are three non-coplanar vectors and |(a, a^(2), 1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3))|=0 , then the value of abc is

If a , b ,c are all different and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-1]|=0, show that a b c(a b+b c+c a)=a+b+c

Knowledge Check

  • If a,b,c are distinct real numbers and |{:(a,a^(2),a^(3)-1),(b,b^(2),b^(3)-1),(c,c^(2),c^(3)-1):}|=0 then

    A
    `a+b+c=0`
    B
    `abc=1`
    C
    `a+b+c=1`
    D
    `ab+bc+ca=0`
  • Similar Questions

    Explore conceptually related problems

    If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-1]| =0, show that abc(ab+bc+ac) = a+b+c

    If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-1]| =0, show that abc(ab+bc+ac) = a+b+c

    If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-1]| =0, show that abc(ab+bc+ac) = a+b+c

    If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|= (a -b) (b -c) (c -a) (a + b+c) where a, b, c are all different, then the determinant |(1,1,1),((x-a)^(2),(x -b)^(2),(x -c)^(2)),((x -b) (x -c),(x -c) (x -a),(x -a) (x -b))| vanishes when

    " if " Delta = |{:(abc,,b^(2)c,,c^(2)b),(abc ,,c^(2)a,,ca^(2)),( abc,,a^(2)b,,b^(2)a):}| =0 , (a, b, c in R " and are all " different and non- zero ) the prove that a+b+c=0

    Prove that : |{:(a+b,b,c),(b+c,c,a),(c+a,a,b):}|=3 abc-a^(3)-b^(3)-c^(3)

    Prove that Delta = |{:(1,,1,,1),(a,,b,,c),(bc+a^(2),,ac+b^(2),,ab+c^(2)):}| = 2(a-b)(b-c)(c-a)