Home
Class 12
MATHS
The points with position vectors vecx + ...

The points with position vectors `vecx + vecy, vecx-vecy and vecx +λ vecy` are collinear for all real values of λ.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the points with position vectors \(\vec{x} + \vec{y}\), \(\vec{x} - \vec{y}\), and \(\vec{x} + \lambda \vec{y}\) are collinear for all real values of \(\lambda\), we can follow these steps: ### Step 1: Define the Points Let: - Point A be represented by the position vector \(\vec{A} = \vec{x} + \vec{y}\) - Point B be represented by the position vector \(\vec{B} = \vec{x} - \vec{y}\) - Point C be represented by the position vector \(\vec{C} = \vec{x} + \lambda \vec{y}\) ### Step 2: Find Vectors AB and BC To check for collinearity, we need to find the vectors \(\vec{AB}\) and \(\vec{BC}\). 1. **Vector AB**: \[ \vec{AB} = \vec{B} - \vec{A} = (\vec{x} - \vec{y}) - (\vec{x} + \vec{y}) \] Simplifying this: \[ \vec{AB} = \vec{x} - \vec{y} - \vec{x} - \vec{y} = -2\vec{y} \] 2. **Vector BC**: \[ \vec{BC} = \vec{C} - \vec{B} = (\vec{x} + \lambda \vec{y}) - (\vec{x} - \vec{y}) \] Simplifying this: \[ \vec{BC} = \vec{x} + \lambda \vec{y} - \vec{x} + \vec{y} = (\lambda + 1)\vec{y} \] ### Step 3: Check for Parallelism For points A, B, and C to be collinear, the vectors \(\vec{AB}\) and \(\vec{BC}\) must be parallel. From our calculations: - \(\vec{AB} = -2\vec{y}\) - \(\vec{BC} = (\lambda + 1)\vec{y}\) Both vectors are scalar multiples of \(\vec{y}\). This means that: \[ \vec{AB} \text{ is parallel to } \vec{BC} \text{ for all real values of } \lambda \] ### Conclusion Since \(\vec{AB}\) and \(\vec{BC}\) are parallel for all values of \(\lambda\), the points A, B, and C are collinear for all real values of \(\lambda\). Thus, the statement is **true**. ---

To determine whether the points with position vectors \(\vec{x} + \vec{y}\), \(\vec{x} - \vec{y}\), and \(\vec{x} + \lambda \vec{y}\) are collinear for all real values of \(\lambda\), we can follow these steps: ### Step 1: Define the Points Let: - Point A be represented by the position vector \(\vec{A} = \vec{x} + \vec{y}\) - Point B be represented by the position vector \(\vec{B} = \vec{x} - \vec{y}\) - Point C be represented by the position vector \(\vec{C} = \vec{x} + \lambda \vec{y}\) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise FILL IN THE BLANKS|2 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

Sate true/false. The points with position vectors veca + vecb, veca-vecb and veca +k vecb are collinear for all real values of k.

If vec a , vec b are two non-collinear vectors, prove that the points with position vectors vec a+ vec b , vec a- vec b and vec a+lambda vec b are collinear for all real values of lambdadot

If vec a , vec b are two non-collinear vectors, prove that the points with position vectors vec a+ vec b , vec a- vec b and vec a+lambda vec b are collinear for all real values of lambdadot

If A,B,C are three points with position vectors veci+vecj,veci-hatj and pveci+qvecj+rveck respectiey then the points are collinear if (A) p=q=r=0 (B) p=qr=1 (C) p=q,r=0 (D) p=1,q=2,r=0

If P_(1) and P_(2) are the perpendicular of the points with position vectors veca = 3veci - 5 hatj+8hatk and vecb = 2veci - 41 hatj+ 21hatk from the plane vecr cdot (2hati + 3hatj -hatk)=12, then P_(1)^(2)+P_(2)^(2) is equal to __________.

The points with position vectors 10hati+3hatj,12hati-5hatj and ahati+11hatj are collinear, if a is equal to

Three points having position vectors bara,barb and barc will be collinear if

Solve the following simultaneous equation for vectors vecx and vecy, if vecx+vecy=veca, vecx xxvecy=vecb, vecx.veca=1

The vectors vec a=3 veci-2 vec j+2 vec k and vec b=- vec i-2 vec k are adjacent side of a parallelogram. Then angle between its diagonals is pi/4 (b) pi/3 (c) (3pi)/4 (d) (2pi)/3

The position vector sof points P,Q,R are 3veci+4vecj+5veck, 7veci-veck and 5veci+5vecj respectivley. If A is a point equidistant form the lines OP, OQ and OR find a unit vector along vec(OA) where O is the origin.