Home
Class 12
MATHS
If a1,a2,a3, ,an are in A.P., where ai >...

If `a_1,a_2,a_3, ,a_n` are in A.P., where `a_i >0` for all `i` , show that `1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_1)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot`

Text Solution

Verified by Experts

Given, `a_(1),a_(2),….,a_(n)` are in A.P., `AAa_(i)gt0`
`thereforea_(1)-a_(2)=a_(2)-a_(3)=….=A_(n-1)-a_(n)=-d` (a constant)
Now, `1/(sqrt(a_(1))+sqrt(a_(2)))+1/(sqrt(a_(2))+sqrt(a_(3)))+….+1/(sqrt(an-1)+sqrt(a_(n)))`
`=(sqrt(a_(1))-sqrt(a_(2)))/(a_(1)-a_(2))+(sqrt(a_(2))-sqrta_(3))/(a_(2)-a_(3))+...+(sqrt(a_(n-1))-sqrt(a_(n)))/(a_(n-1)-a_(n))`
(On rationalizing denominators)
`=(sqrt(a_(1))-sqrt(a_(2)))/(-d)+(sqrta_(2)-sqrta_(3))/(-d)+...+(sqrt(a_(n-1))-sqrt(a_(n)))/(-d)`
`=(sqrt(a_(n))-sqrt(a_(1)))/d`
`=(a_n-a_(1))/(d(sqrt(a_(n))+a_(a_(1))))`
`=((n-1)d)/(d(sqrt(a_(n))+sqrt(a_(1))))=(n-1)/(sqrt(a_(n))+sqrt(a_(1)))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.13|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.14|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.11|1 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_2)+sqrt(a_3))+ ..+1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_2)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot

If a_1,a_2,a_3, ,a_n are an A.P. of non-zero terms, prove that 1/(a_1a_2)+1/(a_2a_3)++1/(a_(n-1)a_n)= (n-1)/(a_1a_n)

If a_r>0, r in N and a_1.a_2,....a_(2n) are in A.P then (a_1+a_2)/(sqrta_1+sqrta_2)+(a_2+a_(2n-1))/(sqrta_2+sqrta_3)+.....+(a_n+a_(n+1))/(sqrt a_n+sqrta_(n+1))=

If a_1, a_2,a_3, ,a_n is an A.P. with common difference d , then prove that "tan"[tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+tan^(-1)(d/(1+a_(n-1)a_n))]=((n-1)d)/(1+a_1a_n)

If a_1,a_2,a_3,…………..a_n are in A.P. whose common difference is d, show tht sum_2^ntan^-1 d/(1+a_(n-1)a_n)= tan^-1 ((a_n-a_1)/(1+a_na_1))

If a_1,a_2,a_3,...,a_(n+1) are in A.P. , then 1/(a_1a_2)+1/(a_2a_3)....+1/(a_na_(n+1)) is

If A,A_1,A_2 and A_3 are the areas of the inscribed and escribed circles of a triangle, prove that 1/sqrtA=1/sqrt(A_1)+1/sqrt(A_2)+1/sqrt(A_3)

If a_1, a_2, a_3, ,a_(2n+1) are in A.P., then (a_(2n+1)-a_1)/(a_(2n+1)+a_1)+(a_(2n)-a_2)/(a_(2n)+a_2)++(a_(n+2)-a_n)/(a_(n+2)+a_n) is equal to a. (n(n+1))/2xx(a_2-a_1)/(a_(n+1)) b. (n(n+1))/2 c. (n+1)(a_2-a_1) d. none of these

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i