Home
Class 12
MATHS
If S(n)=1+1/2+1/3+…+1/n(ninN), then prov...

If `S_(n)=1+1/2+1/3+…+1/n(ninN)`, then prove that
`S_(1)+S_(2)+..+S_((n-1))=(nS((n))-n)or(nS((n-1))-n+1)`

Text Solution

Verified by Experts

`S_((1))+S_((2))+..+S_((n-1))`
1+
`1+1/2+`
`1+1/2+1/3`
………………..
………………..
`1+1/2+1/3+………1/(n-1)`
Adding vertically
`=(n-1)+((n-2))/2+((n-3))/3+….((n-(n-1))/((n-1)))`
`=n[1+1/2+1/3+…….+1/(n-1)]-[1+1+1+….1]`
`=nS_((n-1))-(n-1)=nS_(n)-n`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLES 5.7|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLES 5.8|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLES 5.5|1 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If the sum of n, 2n and infinite terms of G.P. are S_(1),S_(2) and S respectively, then prove that S_(1)(S_(1)-S)=S(S_(1)-S_(2)).

If S=a_1+a_2+......+a_n,a_i in R^+ for i=1 to n, then prove that S/(S-a_1)+S/(S-a_2)+......+S/(S-a_n) ge n^2/(n-1), AA n ge 2

Knowledge Check

  • If for n sequences S_(n)=2(3^(n)-1) , then the third term is

    A
    A. 18
    B
    B. 14
    C
    C. 36
    D
    D. 48
  • Similar Questions

    Explore conceptually related problems

    The sum S_(n) where T_(n) = (-1)^(n) (n^(2) + n +1)/( n!) is

    If S_(1), S_(2), S_(3),….., S_(n) are the sum of infinite geometric series whose first terms are 1,3,5…., (2n-1) and whose common rations are 2/3, 2/5,…., (2)/(2n +1) respectively, then {(1)/(S_(1) S_(2)S_(3))+ (1)/(S_(2) S_(3) S_(4))+ (1)/(S_(3) S_(4)S_(5))+ ........."upon infinite terms"}=

    If S_n=1^2+(1^2+2^2)+(1^2+2^2+3^2)+ upto n terms, then S_n=(n(n+1)^2(n+2))/(12) b. S_n=(n(n-1)^2(n+2))/(12) c. S_(22)=3276 d. S_(22)=23275

    If S_n denotes the sum of first n terms of an A.P. and (S_(3n)-S_(n-1))/(S_(2n)-S_(2n-1))=31 , then the value of n is a. 21 b. 15 c.16 d. 19

    If S_n denotes the sum of first n terms of an A.P. and (S_(3n)-S_(n-1))/(S_(2n)-S_(2n-1))=31 , then the value of n is 21 b. 15 c.16 d. 19

    Let S_(n)=1+2+3+...+n " and " P_(n)=(S_(2))/(S_(2)-1).(S_(3))/(S_(3)-1).(S_(4))/(S_(4)-1)...(S_(n))/(S_(n)-1) , where n inN,(nge2) Then underset(ntooo)limP_(n) =__________.

    If S_1, S_2, ,S_n are the sum of n term of n G.P., whose first term is 1 in each and common ratios are 1,2,3, ,n respectively, then prove that S_1+S_2+2S_3+3S_4+(n-1)S_n=1^n+2^n+3^n++n^ndot