Home
Class 12
MATHS
The value of the expression 1.(2-omega)....

The value of the expression `1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2),` where omega is an imaginary cube root of unity, is………

Text Solution

AI Generated Solution

To solve the expression \( S = 1 \cdot (2 - \omega)(2 - \omega^2) + 2 \cdot (3 - \omega)(3 - \omega^2) + \ldots + (n-1) \cdot (n - \omega)(n - \omega^2) \), where \( \omega \) is an imaginary cube root of unity, we can follow these steps: ### Step 1: Understand the properties of \( \omega \) The cube roots of unity are given by: \[ \omega = e^{2\pi i / 3} \quad \text{and} \quad \omega^2 = e^{-2\pi i / 3} \] These satisfy the equations: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLES 5.8|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLES 5.9|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLES 5.6|1 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,omega^(4)),(omega^(5),omega^(4),1)| , where omega is an imaginary cube root of unity, is

The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+1/omega^(2))+(3+1/omega^(2))+…………..+(n+1/omega)(n+1/omega^(2)) , where omega is an imaginary cube root of unity, is

The value of the expression 2(1+(1)/(omega))(1+(1)/(omega^(2)))+3(2+(1)/(omega))(2+(1)/(omega^(2)))+4(3+(1)/(omega^()))(3+(1)/(omega^(2)))+.......+(n+1)(n+(1)/(omega^()))(n+(1)/(omega^(2))) where omega is an imaginary cube roots of unity, is:

Prove that the value of determinant |{:(1,,omega,,omega^(2)),(omega ,,omega^(2),,1),( omega^(2),, 1,,omega):}|=0 where omega is complex cube root of unity .

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega, omega)| where omega is cube root of unity.

If x=omega-omega^2-2 then , the value of x^4+3x^3+2x^2-11x-6 is (where omega is a imaginary cube root of unity)

If x=omega-omega^2-2 then , the value of x^4+3x^3+2x^2-11x-6 is (where omega is a imaginary cube root of unity)

If omega is a cube root of unity, then 1+ omega^(2)= …..

If A =({:( 1,1,1),( 1,omega ^(2) , omega ),( 1 ,omega , omega ^(2)) :}) where omega is a complex cube root of unity then adj -A equals

If 1,alpha_1,alpha_2,alpha_3,alpha_4 be the roots x^5-1=0 , then value of [omega-alpha_1]/[omega^2-alpha_1].[omega-alpha_2]/[omega^2-alpha_2].[omega-alpha_3]/[omega^2-alpha_3].[omega-alpha_4]/[omega^2-alpha_4] is (where omega is imaginary cube root of unity)