Home
Class 12
MATHS
The value of Sigma(r=1)^(n) (a+r+ar)(-a)...

The value of `Sigma_(r=1)^(n) (a+r+ar)(-a)^r` is equal to

A

`(-1)^n[n+1)a^(n+1)-a]`

B

`(-1)^n(n+1)a^(n+1)`

C

`(-1)^n((n+2)a^(n+1))/2`

D

`(-1)^n(na^n)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation: \[ \Sigma_{r=1}^{n} (a + r + ar)(-a)^r \] ### Step 1: Expand the General Term The general term of the summation can be expanded as follows: \[ (a + r + ar)(-a)^r = a(-a)^r + r(-a)^r + ar(-a)^r \] This can be rewritten as: \[ -a^{r+1} + r(-a)^r + ar(-a)^r \] ### Step 2: Break Down the Summation Now we can break down the summation into three separate summations: \[ \Sigma_{r=1}^{n} (-a^{r+1}) + \Sigma_{r=1}^{n} r(-a)^r + \Sigma_{r=1}^{n} ar(-a)^r \] ### Step 3: Evaluate Each Summation 1. **First Summation**: \[ \Sigma_{r=1}^{n} (-a^{r+1}) = -a \Sigma_{r=1}^{n} a^r = -a \left( \frac{a(1 - a^n)}{1 - a} \right) = -\frac{a^2(1 - a^n)}{1 - a} \] 2. **Second Summation**: The second summation can be evaluated using the formula for the sum of a geometric series: \[ \Sigma_{r=1}^{n} r(-a)^r \] This can be calculated using the formula for the sum of \( r \cdot x^r \): \[ \Sigma_{r=1}^{n} r x^r = x \frac{d}{dx} \left( \frac{1 - x^{n}}{1 - x} \right) \] Substituting \( x = -a \) will give us the result. 3. **Third Summation**: The third summation can be simplified as: \[ a \Sigma_{r=1}^{n} r(-a)^r \] ### Step 4: Combine the Results Now, we combine the results of the three summations to get the final answer. ### Final Answer After evaluating and simplifying, we find that the value of the summation is: \[ -\frac{a^2(1 - a^n)}{1 - a} + a \cdot \text{(result from second summation)} \]

To solve the problem, we need to evaluate the summation: \[ \Sigma_{r=1}^{n} (a + r + ar)(-a)^r \] ### Step 1: Expand the General Term The general term of the summation can be expanded as follows: ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( NUMERICAL VALUE TYPE )|28 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.9|9 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

If Sigma_(r=1)^(n) r^4=I(n), " then "Sigma__(r=1)^(n) (2r -1)^4 is equal to

Sigma_(r=1)^(50)(r^2)/(r^2+(11-r)^2) is equal to ______.

sum_(r=1)^n r (n-r +1) is equal to :

sum_(r=1)^n (a^r +br) , a , b in R^+ is equal to :

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

The value of Sigma_(r=1)^(infty) tan^(-1) ( 1/(r^(2) + 5r + 7)) is equal to

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

CENGAGE ENGLISH-PROGRESSION AND SERIES-EXERCIESE ( SINGLE CORRECT ANSWER TYPE )
  1. Consider the sequence 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8,... Then 1025th te...

    Text Solution

    |

  2. The value of sum(i-1)^nsum(j=1)^isum(k=1)^j1=220 , then the value of n...

    Text Solution

    |

  3. If 1^2+2^2+3^2++2003^2=(2003)(4007)(334) and (1)(2003)+(2)(2002)+(3)(2...

    Text Solution

    |

  4. If tn denotes the nth term of the series 2+3+6+11+18+….. Then t50 is

    Text Solution

    |

  5. The sum of series Sigma(r=0)^(r) (-1)^r(n+2r)^2 (where n is even) is

    Text Solution

    |

  6. If (1^2-t1)+(2^2-t2)+---+(n^2-tn)=(n(n^2-1))/3 , then tn is equal to a...

    Text Solution

    |

  7. If (1+3+5++p)+(1+3+5++q)=(1+3+5++r) where each set of parentheses cont...

    Text Solution

    |

  8. If Hn=1+1/2+...+1/ndot , then the value of Sn=1+3/2+5/3+...+(99)/(50) ...

    Text Solution

    |

  9. The sum to 50 terms of the series 3/1^2+5/(1^2+2^2)+7/(1^+2^2+3^2)+...

    Text Solution

    |

  10. Let S=4/(19)+(44)/(19^2)+(444)/(19^3)+ u ptooo . Then s is equal to a....

    Text Solution

    |

  11. If 1-1/3+1/5-1/7+1/9-1/(11)+=pi/4 , then value of 1/(1xx3)+1/(5xx7)+1/...

    Text Solution

    |

  12. If 1/(1^2)+1/(2^2)+1/(3^2)+ tooo=(pi^2)/6,t h e n1/(1^2)+1/(3^2)+1/(5^...

    Text Solution

    |

  13. lim(nrarroo) Sigma(r=1)^(n) (r)/(1xx3xx5xx7xx9xx...xx(2r+1)) is equal ...

    Text Solution

    |

  14. The greatest interger by which 1+Sigma(r=1)^(30) rxxr ! is divisible...

    Text Solution

    |

  15. If Sigma(r=1)^(n) r^4=I(n), " then "Sigma(r=1)^(n) (2r -1)^4 is equal ...

    Text Solution

    |

  16. Value of lim(ntooo)(1+1/3)(1+1/(3^2))(1+1/(3^4))(1+1/(3^8))oo is equal...

    Text Solution

    |

  17. If x1,x2 …,x(20) are in H.P and x1,2,x(20) are in G.P then Sigma(r=1)^...

    Text Solution

    |

  18. The value of Sigma(r=1)^(n) (a+r+ar)(-a)^r is equal to

    Text Solution

    |

  19. The sum of series x/(1-x^2)+(x^2)/(1-x^4)+(x^4)/(1-x^8)+ to infinite t...

    Text Solution

    |

  20. The sum of 20 terms of the series whose rth term s given by kT(n)=(-1)...

    Text Solution

    |