Home
Class 12
MATHS
The value of Sigma(r=1)^(n) (a+r+ar)(-a)...

The value of `Sigma_(r=1)^(n) (a+r+ar)(-a)^r` is equal to

A

`(-1)^n[n+1)a^(n+1)-a]`

B

`(-1)^n(n+1)a^(n+1)`

C

`(-1)^n((n+2)a^(n+1))/2`

D

`(-1)^n(na^n)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation: \[ \Sigma_{r=1}^{n} (a + r + ar)(-a)^r \] ### Step 1: Expand the General Term The general term of the summation can be expanded as follows: \[ (a + r + ar)(-a)^r = a(-a)^r + r(-a)^r + ar(-a)^r \] This can be rewritten as: \[ -a^{r+1} + r(-a)^r + ar(-a)^r \] ### Step 2: Break Down the Summation Now we can break down the summation into three separate summations: \[ \Sigma_{r=1}^{n} (-a^{r+1}) + \Sigma_{r=1}^{n} r(-a)^r + \Sigma_{r=1}^{n} ar(-a)^r \] ### Step 3: Evaluate Each Summation 1. **First Summation**: \[ \Sigma_{r=1}^{n} (-a^{r+1}) = -a \Sigma_{r=1}^{n} a^r = -a \left( \frac{a(1 - a^n)}{1 - a} \right) = -\frac{a^2(1 - a^n)}{1 - a} \] 2. **Second Summation**: The second summation can be evaluated using the formula for the sum of a geometric series: \[ \Sigma_{r=1}^{n} r(-a)^r \] This can be calculated using the formula for the sum of \( r \cdot x^r \): \[ \Sigma_{r=1}^{n} r x^r = x \frac{d}{dx} \left( \frac{1 - x^{n}}{1 - x} \right) \] Substituting \( x = -a \) will give us the result. 3. **Third Summation**: The third summation can be simplified as: \[ a \Sigma_{r=1}^{n} r(-a)^r \] ### Step 4: Combine the Results Now, we combine the results of the three summations to get the final answer. ### Final Answer After evaluating and simplifying, we find that the value of the summation is: \[ -\frac{a^2(1 - a^n)}{1 - a} + a \cdot \text{(result from second summation)} \]

To solve the problem, we need to evaluate the summation: \[ \Sigma_{r=1}^{n} (a + r + ar)(-a)^r \] ### Step 1: Expand the General Term The general term of the summation can be expanded as follows: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( NUMERICAL VALUE TYPE )|28 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.9|9 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

If Sigma_(r=1)^(n) r^4=I(n), " then "Sigma__(r=1)^(n) (2r -1)^4 is equal to

Sigma_(r=1)^(50)(r^2)/(r^2+(11-r)^2) is equal to ______.

sum_(r=1)^n r (n-r +1) is equal to :

sum_(r=1)^n (a^r +br) , a , b in R^+ is equal to :

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

The value of Sigma_(r=1)^(infty) tan^(-1) ( 1/(r^(2) + 5r + 7)) is equal to

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to