Home
Class 12
MATHS
Let Sn=Sigma(k=1)^(4n) (-1)^((k(k+1))/2...

`Let S_n=Sigma_(k=1)^(4n) (-1)^((k(k+1))/2)k^2`.Then `S_n` can take value (s)

A

1056

B

1088

C

1120

D

1332

Text Solution

Verified by Experts

The correct Answer is:
A, D

`S_(n)=sum_(k=1)^(4n)(-1)^(k(k+1))/2)k^(2)`
`=sum_(r-0)^((n-1))((4r+4)^(2)+(4r+3)^(2)-(4r+2)^(2)-(4r+1)^(2))`
`=sum_(r=0)^((n-1))(2(8r+6)+2(8r+4))`
`=sum_(r=0)^((n-1))(32r+20)`
`=16(n-1)n+20n`
`=4n(4n+1)`
`={{:(1056 " for n ="8),("1332 for n= 9"):}`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise Single correct Answer|54 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES ( JEE ADVANCED )(SINGLE CORRECT ANSWER TYPE )|3 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Let S_n=sum_(k=1)^(4n)(-1)(k(k+1))/2k^2dot Then S_n can take value (s) 1056 b. 1088 c. 1120 d. 1332

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

Let S _(n ) = sum _( k =0) ^(n) (1)/( sqrt ( k +1) + sqrt k) What is the value of sum _( n =1) ^( 99) (1)/( S _(n ) + S _( n -1)) ?=

The value of 5 * cot ( Sigma_(k =1)^(5) cot ^(-1) ( k^(2) + k + 1)) is equal to

If sum_(k=1)^(k=n)tan^(- 1)((2k)/(2+k^2+k^4))=tan^(- 1)(6/7), then the value of 'n' is equal to

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

Statement 1 : The sum of the series 1+(1+2+4)+(4+6+9)+(9+12+16)+….+(361 +380 +400) is 8000 Statement 1: Sigma_(k=1)^(n) (k^3-(k-1)^3)=n^3 , for any natural number n.

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

Let f(n)=sum_(k=-n)^(n)(cot^(-1)((1)/(k))-tan^(-1)(k)) such that sum_(n=2)^(10)(f(n)+f(n-1))=a pi then find the value of (a+1) .