Home
Class 12
MATHS
Prove that (1)/(a) + (1)/(b) + (1)/(c ) ...

Prove that `(1)/(a) + (1)/(b) + (1)/(c ) ge (1)/(sqrt((bc))) + (1)/(sqrt((ca))) + (1)/(sqrt((ab)))`, where a,b,c `gt` 0

Text Solution

AI Generated Solution

To prove the inequality \[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq \frac{1}{\sqrt{bc}} + \frac{1}{\sqrt{ca}} + \frac{1}{\sqrt{ab}}, \] where \( a, b, c > 0 \), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.2|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Example 8|1 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

Prove that : (1)/(sqrt(2)+1)+ (1)/(sqrt(3)+sqrt(2))+ (1)/(2+sqrt(3))=1

Prove that |{:(1,,ab,,(1)/(a)+(1)/(b)),(1 ,,bc,,(1)/(b)+(1)/(c)),( 1,, ca,,(1)/(c)+(1)/(a)):}|=0

Prove that : tan^(-1) a - tan^(-1) b = cos ^(-1) [(1+ab)/(sqrt((1+a^(2))(1+b^(2))))]

Prove that 1+(1)/(sqrt2)+(1)/(sqrt3)+....+(1)/(sqrtn) ge sqrtn, AA n in N

If sum_(k = 1)^(oo) (1)/((k + 2)sqrt(k) + ksqrt(k + 2)) = (sqrt(a) + sqrt(b))/(sqrt(c)) , where a, b, c in N and a,b,c in [1, 15] , then a + b + c is equal to

Let a, b and c be positive real numbers. Then prove that tan^(-1) sqrt((a(a + b + c))/(bc)) + tan^(-1) sqrt((b (a + b + c))/(ca)) + tan^(-1) sqrt((c(a + b+ c))/(ab)) =' pi'

Evaluate : (1)/(log_(a)bc + 1) + (1)/(log_(b)ca + 1) + (1)/(log_(c) ab + 1)

Prove that : cot^(-1)((1+ab)/(a-b))+cot^(-1)((1+bc)/(b-c))+cot^(-1)((1+ca)/(c-a))=pi,(a>b>c>0)

The value of sin(1/4sin^(-1)((sqrt(63))/8)) is (a) 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

Prove that tan^(-1)((a-b)/(1+ab))+ tan^(-1)((b-c)/(1+bc))+tan^(-1)((c-a)/(1+ca))=0 , ab>(-1), bc>(-1), ca>(-1)