Home
Class 12
MATHS
If f(x)=ax^(2)+bx+c and f(-1) ge -4, f(1...

If `f(x)=ax^(2)+bx+c` and `f(-1) ge -4`, `f(1) le 0` and `f(3) ge 5`, then the least value of `a` is

A

`1//4`

B

`1//8`

C

`1//3`

D

`-1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the conditions given for the quadratic function \( f(x) = ax^2 + bx + c \). ### Step 1: Set up the inequalities based on the conditions We have three conditions based on the values of \( f(x) \): 1. \( f(-1) \geq -4 \) 2. \( f(1) \leq 0 \) 3. \( f(3) \geq 5 \) ### Step 2: Write the inequalities Using the function \( f(x) = ax^2 + bx + c \), we can express these conditions as: 1. For \( f(-1) \): \[ f(-1) = a(-1)^2 + b(-1) + c = a - b + c \geq -4 \quad \text{(Inequality 1)} \] Which simplifies to: \[ a - b + c + 4 \geq 0 \quad \text{(1)} \] 2. For \( f(1) \): \[ f(1) = a(1)^2 + b(1) + c = a + b + c \leq 0 \quad \text{(Inequality 2)} \] Which simplifies to: \[ a + b + c \leq 0 \quad \text{(2)} \] 3. For \( f(3) \): \[ f(3) = a(3)^2 + b(3) + c = 9a + 3b + c \geq 5 \quad \text{(Inequality 3)} \] Which simplifies to: \[ 9a + 3b + c - 5 \geq 0 \quad \text{(3)} \] ### Step 3: Rearranging the inequalities Now we can rearrange these inequalities for easier manipulation: 1. From (1): \[ a - b + c \geq -4 \quad \Rightarrow \quad a - b + c \geq -4 \quad \text{(1)} \] 2. From (2): \[ a + b + c \leq 0 \quad \Rightarrow \quad -a - b - c \geq 0 \quad \text{(2)} \] 3. From (3): \[ 9a + 3b + c \geq 5 \quad \Rightarrow \quad 9a + 3b + c - 5 \geq 0 \quad \text{(3)} \] ### Step 4: Combine the inequalities Now we will add (1) and (2): \[ (a - b + c) + (-a - b - c) \geq -4 + 0 \] This simplifies to: \[ -2b \geq -4 \quad \Rightarrow \quad b \leq 2 \quad \text{(4)} \] Next, we will add (2) and (3): \[ (a + b + c) + (9a + 3b + c) \geq 0 + 5 \] This simplifies to: \[ 10a + 4b + 2c \geq 5 \quad \text{(5)} \] ### Step 5: Solve for \( a \) Now we have the inequalities: 1. \( b \leq 2 \) from (4) 2. We can use (2) to express \( c \): \[ c = -a - b \quad \text{(from (2))} \] Substitute \( c \) in (5): \[ 10a + 4b + 2(-a - b) \geq 5 \] Simplifying gives: \[ 10a + 4b - 2a - 2b \geq 5 \] \[ 8a + 2b \geq 5 \] \[ 4a + b \geq \frac{5}{2} \quad \text{(6)} \] ### Step 6: Substitute \( b \) from (4) Substituting \( b = 2 \) into (6): \[ 4a + 2 \geq \frac{5}{2} \] \[ 4a \geq \frac{5}{2} - 2 \] \[ 4a \geq \frac{1}{2} \] \[ a \geq \frac{1}{8} \] ### Conclusion Thus, the least value of \( a \) is: \[ \boxed{\frac{1}{8}} \]

To solve the problem step by step, we will analyze the conditions given for the quadratic function \( f(x) = ax^2 + bx + c \). ### Step 1: Set up the inequalities based on the conditions We have three conditions based on the values of \( f(x) \): 1. \( f(-1) \geq -4 \) 2. \( f(1) \leq 0 \) 3. \( f(3) \geq 5 \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Jee Advanced (Single|1 Videos

Similar Questions

Explore conceptually related problems

If f(x)=ax^(2)+bx+c, f(-1) gt (1)/(2), f(1) lt -1 and f(-3)lt -(1)/(2) , then

Let f(x) =ax^(2) + bx + c and f(-1) lt 1, f(1) gt -1, f(3) lt -4 and a ne 0 , then

Knowledge Check

  • If f(x) = ax^2+bx+c and f(1)=3 and f(-1)=3, then a+c equals

    A
    -3
    B
    0
    C
    2
    D
    3
  • If f(x)=ax^(2)+bx+c and f(x+1)=f(x)+x+1 , then the value of (a+b) is __

    A
    -2
    B
    -1
    C
    0
    D
    1
  • If f(x) = ax^(2)+bx+c, f(-1)=-18 , and f(1)=10 , what is the value of b ?

    A
    `-12`
    B
    `-4`
    C
    14
    D
    21
  • Similar Questions

    Explore conceptually related problems

    Using matrix method, find the quadratic defined by f(x) = ax^(2) + bx + c if f(1) = 0, f(2) = -2 and f(3) = -6. Hence find the value of f(-1).

    If f(x) = ax^(2) + bx + c is such that |f(0)| le 1, |f(1)| le 1 and |f(-1)| le 1 , prove that |f(x)| le 5//4, AA x in [-1, 1]

    Suppose that f(x) is a function of the form f(x)=(ax^(8)+bx^(6)+cx^(4)+dx^(2)+15x+1)/(x), (x ne 0)." If " f(5)=2 , then the value of f(-5) is _________.

    If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0) , and f(0) = 0, then the value of f(1) is

    Let f(x)=ax^(2)+bx+c , a ne 0 , a , b , c in I . Suppose that f(1)=0 , 50 lt f(7) lt 60 and 70 lt f(8) lt 80 . The least value of f(x) is