Home
Class 12
MATHS
For xge 0 , the smallest value of the fu...

For `xge 0` , the smallest value of the function `f(x)=(4x^2+8x+13)/(6(1+x))`, is ________.

Text Solution

AI Generated Solution

The correct Answer is:
To find the smallest value of the function \( f(x) = \frac{4x^2 + 8x + 13}{6(1+x)} \) for \( x \geq 0 \), we can follow these steps: ### Step 1: Simplify the function We start with the function: \[ f(x) = \frac{4x^2 + 8x + 13}{6(1+x)} \] ### Step 2: Rewrite the numerator The numerator \( 4x^2 + 8x + 13 \) can be rewritten as: \[ 4x^2 + 8x + 13 = 4(x^2 + 2x) + 13 \] Completing the square for \( x^2 + 2x \): \[ x^2 + 2x = (x+1)^2 - 1 \] Thus, \[ 4(x^2 + 2x) + 13 = 4((x+1)^2 - 1) + 13 = 4(x+1)^2 - 4 + 13 = 4(x+1)^2 + 9 \] ### Step 3: Substitute back into the function Now substituting back, we have: \[ f(x) = \frac{4(x+1)^2 + 9}{6(1+x)} = \frac{4(x+1)^2}{6(1+x)} + \frac{9}{6(1+x)} \] This simplifies to: \[ f(x) = \frac{2}{3}(x+1) + \frac{3}{2(x+1)} \] ### Step 4: Use AM-GM inequality To find the minimum value of \( f(x) \), we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. We set: \[ A = \frac{2}{3}(x+1) \quad \text{and} \quad B = \frac{3}{2(x+1)} \] According to AM-GM: \[ \frac{A + B}{2} \geq \sqrt{AB} \] ### Step 5: Calculate \( AB \) Calculating \( AB \): \[ AB = \left(\frac{2}{3}(x+1)\right) \left(\frac{3}{2(x+1)}\right) = 1 \] ### Step 6: Apply AM-GM Thus, we have: \[ \frac{A + B}{2} \geq 1 \implies A + B \geq 2 \] This means: \[ f(x) \geq 2 \] ### Step 7: Find when equality holds Equality in AM-GM holds when \( A = B \): \[ \frac{2}{3}(x+1) = \frac{3}{2(x+1)} \] Cross-multiplying gives: \[ 4(x+1)^2 = 9 \implies (x+1)^2 = \frac{9}{4} \implies x+1 = \frac{3}{2} \implies x = \frac{1}{2} \] ### Conclusion Thus, the smallest value of the function \( f(x) \) is: \[ \boxed{2} \]

To find the smallest value of the function \( f(x) = \frac{4x^2 + 8x + 13}{6(1+x)} \) for \( x \geq 0 \), we can follow these steps: ### Step 1: Simplify the function We start with the function: \[ f(x) = \frac{4x^2 + 8x + 13}{6(1+x)} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Jee Advanced (Single|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Linked comprehension type|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

For xgeq0 , the smallest value of the function f(x)=(4x^2+8x+13)/(6(1+x)), is

Find the domain of the function f(x) =(x^2+2x+1)/(x^2-8x+12)

Knowledge Check

  • The maximum value of the function f(x) = (1)/( 4x^(2) + 2 x + 1) is

    A
    `(3)/(4)`
    B
    `-(3)/(4)`
    C
    `(4)/(3)`
    D
    `-(4)/(3)`
  • Similar Questions

    Explore conceptually related problems

    Find the domain of the function f(x)" "=(x^2+2x+1)/(x^2-8x+12)

    Find the domain of the function f(x) = (x^(2)+5x+1)/(x^(2)-6x + 8) .

    the function f(x)=(x^2+4x+30)/(x^2-8x+18) is not one-to-one.

    The maximum value of the function f(x) given by f(x)=x(x-1)^2,0ltxlt2 , is

    The value of c in the Lagrange's mean value theorem for the function f(x)=x^(3)-4x^(2)+8x+11 , when x in [0, 1] is :

    Calculate the greatest and least values of the function f(x)=(x^4)/(x^8+2x^6-4x^4+8x^2+16)

    Find the domain of the function : f(x)=sqrt(4^x+8^((2/3)(x-2))-13-2^(2(x-1)))